Как построить комплексный график в маткаде
Перейти к содержимому

Как построить комплексный график в маткаде

  • автор:

Пример 1.

Mathcad позволяет вывести на график до 16-ти кривых, причем для каждой из них вы можете выбрать свой цвет, тип линии и т.д. В качестве примера добавим к графику, представленному на рис. 7 еще одну кривую – график функции g(t) := t + cos(3t). Для этого достаточно ввести аналитическое выражение функции g(t) (выше поля графика). Затем активизируйте поле графика, поставьте запятую после имени функции f(t) на оси ординат и введите g(t) вместо появившегося после этого маркера ввода. Теперь внесем некоторые изменения. Результат вы можете увидеть нарис. 8.

Пример 2.

рис.8. Две кривых в прямоугольных координатах.

4. Примеры построения графиков на комплексной плоскости и в логарифмическом масштабе. Пример 3.

Построим график на комплексной плоскости. Для этого:

1. Зададим ранговую переменную:

:= 0.01, 0.02 .. 100

2. Зададим аналитическое выражение W(i):

p():= i

k:= 1 T1:= 0.2 T2:= 0.5

3. Создадим поле графика.

4. Введем названия осей: Re(W()) — на оси ординат и Im(W()) — на оси абсцисс.

5. Внесем необходимые изменения:

Растяните мышью поле графика и установите предельные значения по осям.

Вызовите меню Formatting Currently Selected X-Y Plot и выберите в нем вкладку X-Y Axes.

a) Задайте число интервалов так, чтобы линии сетки пересекали ось ординат через 0.2, а ось абсцисс – через 0.25;

рис.9. Пример построения графика на комплексной плоскости.

b) Включите радиокнопку Crossed.

3) Вы можете изменить цвет, толщину и вид линии точно так же, как в предыдущем примере.

4) Задав название графика, заголовки осей и легенду. В результате вы получите изображение, представленное на рис.9.

Пример 4.

Теперь построим график в полулогарифмическом масштабе. Для этого:

1. Зададим аналитическое выражение для построения графика:

2. Создадим поле графика.

3. Введем названия осей: L() — на оси ординат и — на оси абсцисс.

4. Внесем необходимые изменения:

1) Растяните мышью поле графика, пределы по оси ординат — от -70 до 10.

2) Вызовите меню Formatting Currently Selected X-Y Plot и выберите в нем вкладку X-Y Axes.

a) Задайте число интервалов так, чтобы линии сетки пересекали ось ординат через каждые 20 единиц;

b) Задайте логарифмический масштаб по оси Х, включив для нее индикатор Log Scale (заметьте, что после этого изменить число линий сетки невозможно). Пределы по оси абсцисс — от 0.001 до 100;

c) Включите радиокнопку Crossed.

3) Вы можете изменить цвет, толщину и вид линии точно так же, как в предыдущем примере.

4) Задав название графика, заголовки осей и легенду, вы получите изображение, представленное на рис.10.

рис.10. Пример построения графика в полулогарифмическом масштабе.

5. Использование второй оси ординат. Пример 5.

Построим еще один график в полулогарифмическом масштабе в том же поле графика, которое мы использовали в предыдущем примере.

1. Задайте аналитическое выражение для построения графика (над полем графика из предыдущего примера):

где множитель служит для перевода полученного результата из радиан в градусы.

2. Вызовите для поля графика из примера №4 диалоговое окно Formatting Currently Selected X-Y Plot→ X-Y Axes и включите индикатор Enable secondary Yaxis.

3. Введите название второй оси ординат: ().

4. Предельные значения по оси абсцисс оставим без изменений.

5. Проведите линию, соответствующую -180  . Для этого включите в диалоговом окне Formatting Currently Selected X-Y Plot → X-Y Axes в поле Secondary Y axis индикатор состояния Show Markers и вместо одного из появившихся прямоугольников введите -180.

6. Теперь подберем масштаб таким образом, чтобы ось абсцисс для первой кривой совпадала с линией, соответствующей -180  для второй кривой. Предельные значения по первой оси ординат: от -90 до 30, а по второй оси ординат: от 90 до -270.

7. Задайте число интервалов по второй оси ординат так, чтобы линии сетки пересекали ее через каждые 90 единиц и выберите для них цвет.

8. Измените цвет, толщину и вид линии. Задайте название графика, заголовки осей и легенду. График-результат представлен на рис.11.

рис.11. Пример построения двумерного графика в полулогарифмическом масштабе с двумя осями ординат.

Построение графиков в MathCad

В статье рассмотрены основные возможности построения графиков в программе mathcad. Для инженерных и студенческих расчетов, как правило, достаточно знать следующие методы построения графиков:

Построение графика по точкам

Чтобы построить график по точкам в декартовой системе координат необходимо задаться исходными данными. Создадим две матрицы-столбца, назовем их X и Y соответственно и заполним их значениями. Для создания матриц-столбцов воспользйтесь панелью Matrix. В панели matrix нажмите на кнопку под названием Matrix and vector. В появившемся окне введите количество строк и столбцов. Для матрицы-столбца количество столбцов будет очевидно ровно одному. Количество строк зависит от количества точек. В нашем случае это 9 точек. После внесения данных нажмите ОК (см. рис. 1)

Рис. 1. Создание матриц-столбцов

В свободном поле mathcad появится пустая матрица-столбец. Поместите курсор в матрицу и с использованием клавиш «стрелка» и «пробел» добейтесь положения курсора, как показано на рисунке 2а ниже. После чего введите с клавитуры символ двоеточия «:«. У вас должна получиться маска как на рисунке 2b. Теперь вы можете присводить содержимое матрицы какой то переменной. Например переменной X (см. рис. 2c). Заполните матрицу в соответсвии с рисунком 2 и затем повторите те же самые действия для создания матрицы-столбца Y.

Рис. 2. Заполнение матриц-столбцов для графика

На панели Graph найдите кнопку X-Y plot и щелкните по ней левой кнопкой мыши. У вас появится маска для построения графика. В черных прямоугольниках можно вводить имена осей абсцисс и ординат, а так же область отображения кривой графика (см. рис. 3)

Рис. 3. Создание заготовки для графика

Введите под осью абсцисс имя матрицы-столбца X, а слева от оси ординат имя матрицы-столбца Y. В окне графика вы увидите ломаную линию, соединящие координаты, указанные в матрицах столбцах (см. рис. 4)

Рис. 4. График по точкам

Оформление кривой графика по умолчанию, как правило, лишено наглядности и читабельности. Средства mathcad позволяют настраивать отображение графиков. Для этого щелкните 2 раза левой кнопкой мыши по изображению графика и в появившемся окне настройте внешний вид кривой, координатных осей и прочих элементов. Возможности mathcad позволяют: изменять цвет линий, их толщину и тип; нанести сетку на поле графика; подписывать оси координат; изменять формат числовых данных; вводить дополнительную (вторичную, второстепенную) ось ординат. После настройки всех элементов нажмите ОК и вы заметите, что ваш график приобрел более привлекательный вид (см. рис. 5)

Рис. 5. Настройка отображения графика

Построение графика функции f(x)

Возможно самой распространенной задачей в студенческой и инженерной практике является построение графика функции f(x). В mathcad это делается в следующем порядке. С помощью клавиатуры и панели calculator вводится функция f(x), как показано на рис. 6. Для создания функции необходимо использовать равно с двоеточием «:=» (опертор присваивания). Далее в панели Graph найдите иконку X-Y Plot, щелкните по ней и создайте заготовку для графика. В черных прямоугольниках-маркерах введите имя функции и название аргумента. После отображения кривой зайдите в свойства графика и настройте отображение вашей кривой

Рис. 6. Построение графика функции f(x)

Чтобы построить два графика и более на одном поле (в тех же осях координат) сделайте следующее: введите вторую функцию, например y(x):=. , поместите курсор мыши в маркер поля графика, где уже указана первая функция f(x) и введите запятую. Таким образом mathcad зоздаст второй маркер для ввода очередной функции. Введите вашу вторую функцию и нажмите enter. Если имя аргумента обеих функций совпадает, то вторая кривая отобразится в поле графика, в противном случае, под осью абсцисс введите через запятую имя аргумента второй функции. Образец можно посмотреть ниже на рис. 7



Рис. 7. Построение двух графиков функции

Построение эпюры в mathcad

Чтобы построить классическую эпюру в mathcad нужно выполнить следующие действия:

— ввести функцию в виде y = f(x), как это показано в примерах выше;
— ввести такназываемую ранжинрованную переменную в виде i = a, a-dt..b с определенным шагом dt;
— создать поле графика и ввести туда функции f(x) и f(i) с соответствующими аргументами
— настроить визуализацию функции f(i) в соответствии с требованиями к оформлению эпюр в вашем ВУЗе или компании

Ранжированная переменная по сути является матрицей-столбцом, разница лишь в том, что значение элементов в нее входящих представляют из себя определенную закономерность или последовательность чисел. Ранжированную переменную можно ввести воспользовавшись кнопкой Range Variable из панели Matrix. Первый маркер отвечает за начальное значение последовательности, второй — за конечное. По умолчаию шаг последовательности равен 1. Если после первого элемента ввести символ запятой и в появившемся маркере ввести следующее число вашей последовательности, то таким образом вы определите шаг, с которым будет заполняться ваша последовательность. Обратите внимание на пример ниже.

Рис. 8. Ввод ранжированной переменной

Ранжированные переменные можно использовать для построения эпюр распределения физических величин. Для этого постройте ваш исходный график одним из методов, описанных выше. Пусть это будет график f(x):=x^2. Затем создайте ранжированную переменную с шагом 0.5 как указано в примере ниже

Рис. 9. Ввод ранжированной переменной

Далее создайте поле для графика и около оси ординат введите две функции: f(x) и f(i). Под осью абсцисс также введите соответсвующие аргументы: x и i. Вы должны увидет обычную параболу как на рисунке ниже

Рис. 10. Построение эпюры. Шаг 1

Для получения эпюры нужно настроить отображение функции f(i) в свойствах графика. Щелкните 2 раза по графику чтобы вызвать меню настройки отображения графика. Перейдите во вкладку traces. В списке Legend Label найдите имя trace 2. В столбце Type для trace 2 из выпадающего списка выберете тип графика stem. В столбце Symbol уберите отображение элементов. Во вкладке X-Y Axes выберете для Axis Style тип Crossed. Нажмите ОК и вы увидете эпюру. Вы можете настроить ее внешний вид по желанию.


Рис. 11. Построение эпюры. Шаг 2

В итоге вы увидите, что на графике появились вертикальные линии, которые распределены по оси абсцисс с шагом, который вы указали в ранжированной переменной. Изменяя параметры этой переменной можно настроить отображение эпюры. Эпюра готова (см. рис. 12)

Рис. 12. Построение эпюры. Шаг 3

Построение графика в полярных координатах в mathcad

Введите функцию, которую необходимо построить в полярных координатах. Для примера возьмем y(x):=2*sin(3*x+0.5)

Для построения графика в полярных координатах нажмите кнопку Polar Plot из панели Graph

Рис. 13. Создание загатовки для графика в полярных координатах

Вы увидете пустое поле графика. В черном маркере слева введите имя введенной функции y(x). В маркере снизу введите аргумент x и нажмите enter. Вы увидете «трилистник». Внешний вид графика можно настроить щелкнув два раза по графику левой кнопкой мыши. В появившемся окне представлен широкий набор инструментов для настройки отображения.

Рис. 14. Построение графика в полярной системе координат

Donec eget ex magna. Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis. Praesent rutrum sem diam, vitae egestas enim auctor sit amet. Pellentesque leo mauris, consectetur id ipsum sit amet, fergiat. Pellentesque in mi eu massa lacinia malesuada et a elit. Donec urna ex, lacinia in purus ac, pretium pulvinar mauris. Curabitur sapien risus, commodo eget turpis at, elementum convallis elit. Pellentesque enim turpis, hendrerit tristique.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis dapibus rutrum facilisis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Etiam tristique libero eu nibh porttitor fermentum. Nullam venenatis erat id vehicula viverra. Nunc ultrices eros ut ultricies condimentum. Mauris risus lacus, blandit sit amet venenatis non, bibendum vitae dolor. Nunc lorem mauris, fringilla in aliquam at, euismod in lectus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In non lorem sit amet elit placerat maximus. Pellentesque aliquam maximus risus, vel venenatis mauris vehicula hendrerit.

Interdum et malesuada fames ac ante ipsum primis in faucibus. Pellentesque venenatis dolor imperdiet dolor mattis sagittis. Praesent rutrum sem diam, vitae egestas enim auctor sit amet. Pellentesque leo mauris, consectetur id ipsum sit amet, fersapien risus, commodo eget turpis at, elementum convallis elit. Pellentesque enim turpis, hendrerit tristique lorem ipsum dolor.

MathCAD — это просто! Часть 19. Немного о работе с комплексными числами

Комплексные числа — одна из важнейших математических абстракций, очень часто используемая в реальных расчетах инженерами, физиками, электронщиками и другими специалистами. Само собой, настолько важная часть математики, как работа с комплексными числами, не могла остаться вне поля зрения разработчиков MathCAD’а. Сегодня мы с вами как раз и поговорим о том, как можно работать в MathCAD’е с ними — вы сможете самостоятельно убедиться в том, что это, в общем-то, не представляет каких-либо особых сложностей для пользователя этого мощнейшего математического пакета.

Суть теории комплексных чисел заключается, по существу, в том, что множество действительных чисел можно расширить до другого, нового, множества (оно как раз таки и имеет название множества комплексных чисел), в котором каждое число представимо в виде z = a + b*i, где i — мнимая единица (корень из числа -1, или, вернее, один из корней). При этом a называется действительной частью комплексного числа (обозначается как Re(z)), а b, соответственно, принято называть его мнимой частью. Обозначается же мнимая часть комплексного числа как Im(z). Стоит отметить тот факт, что нередко даже образованные люди теряются, когда им нужно произнести вслух термин «комплексное число». На какую букву ставить ударение в слове «комплексный» — на «о» или «е»? Честно говоря, правильного ответа на этот вопрос я не знаю. Даже в математических словарях и справочниках нет единодушия: в некоторых ударение ставят на одну букву, в некоторых — на другую. Традиционно используют, впрочем, ударение на букву «е» (есть даже шутка такая: «комплексными бывают обеды, а числа — только комплексные»). Но если вы где-то скажете «комплексные числа», то в тюрьму вас за это, конечно же, никто не посадит. Фактически же комплексное число является упорядоченной парой действительных чисел, и часто даже вместо a + b*i записывают комплексные числа в виде (a; b). В ряде практических вычислений нужно оперировать именно такими упорядоченными парами чисел — например, в той же радиоэлектронике такой парой могут служить амплитуда и частота сигнала. Чем же в таком случае комплексное исчисление так принципиально отличается от векторного? В первую очередь, своим математическим аппаратом, позволяющим осуществлять с довольно большой степенью удобства некоторые преобразования над ними.

Существуют различные формы представления комплексного числа, каждая из которых удобна в своем виде операций над этими числами. Та форма, с которой мы с вами уже успели познакомиться, называется алгебраической формой, или алгебраическим представлением комплексного числа. Она удобна для того, чтобы такие числа суммировать (ну, и вычитать, конечно же, тоже). Действительная часть складывается с действительной, мнимая с мнимой, и все получается хорошо. Но вот умножать или возводить в степень комплексные числа в алгебраической форме уже, мягко говоря, не так удобно. Для этого используют тригонометрическую или экспоненциальную формы записи комплексных чисел. В общем-то, эти две формы фактически представляют собой одну и ту же форму записи, которую чаще все же называют тригонометрической. Получается она из алгебраической формы довольно-таки просто. Для начала нужно получить два параметра, с помощью которых комплексное число представляется в тригонометрической форме. Первый параметр называется модулем числа и вычисляется как корень из суммы квадратов a и b. Второй параметр принято называть аргументом комплексного числа z, и вычисляется он как арктангенс выражения b/a. Для любого из комплексных чисел переход от алгебраической формы к тригонометрической не представляет никакой сложности, поскольку формулы, по которым вычисляются и модуль, и аргумент, очень просты и для понимания, и для запоминания, и для применения. Само же комплексное число z записывается в тригонометрической форме следующим образом: z = r (cos? + i*sin?). Здесь r — это модуль комплексного числа z, а ? — соответственно, как вы уже навреняка успели догадаться, его же аргумент. Экспоненциальная форма записи комплексного числа — это, как я уже говорил, по сути, та же тригонометрическая, поскольку на множестве комплексных чисел экспонента ведет себя совсем не так, как на множестве чисел действительных. Фактически та формула для тригонометрической записи числа, которую я только что показал вам, с помощью экспоненты может быть записана гораздо короче: z = r*ei*?. Как видите, с использованием экспоненциального представления становится особенно просто умножать комплексные числа друг на друга, а также возводить их в степень. Для того, чтобы возводить в степень числа в тригонометрическом их представлении, можно воспользоваться формулой Муавра, которая безо всяких сложностей отыщется в любом справочнике по высшей математике.

Комплексные числа в MathCAD: основы

Весь тот небольшой экскурс в работу с комплексными числами, который я привел выше, нужен только для того, чтобы напомнить (или, если кто-то не знал этого, то разъяснить), что же такое комплексные числа, и как именно с ними нужно работать. При работе в MathCAD’е, само собой, вам не понадобится собственноручно вычислять модуль и аргумент комплексного числа, не надо будет самостоятельно высчитывать степень экспоненты при перемножении комплексных чисел и даже не понадобится самому складывать действительную часть с действительной, а мнимую — с мнимой. Все за вас сделает этот мощный математический пакет. То есть, конечно, не все, а только черновую, вычислительную работу — постановка задачи и интерпретация результатов вычислений все равно останется за вами. Хорошая новость состоит в том, что для работы с комплексными числами не нужно как-то по- особенному настраивать среду MathCAD или применять какие-то новые арифметические операторы. Среда точно так же работает с комплексными числами, как и с действительными. Простой пример — сложение комплексных чисел. Попробуйте сложить два комплексных числа — например, 1+2i и 7-15i. Здесь, правда, стоит отдельно сказать пару слов относительно ввода в MathCAD’е мнимой единицы. Дело в том, что, если вы просто напишете ее как i, нажав на клавиатуре соответствующую клавишу, то система MathCAD посчитает, что вы ввели имя какой-либо переменной. Поэтому можно либо воспользоваться панелью инструментов Calculator (см. иллюстрацию, на которой нужная кнопка обведена кружком), либо вводить с клавиатуры комбинацию 1i.

После того, как вы попробуете складывать комплексные числа, можно попробовать их перемножать, чтобы убедиться в том, что MathCAD умеет делать и это. Можете попробовать возводить комплексные числа в какую-либо степень, а также любым другим образом поиздеваться над ними. Как и следовало ожидать, MathCAD с легкостью справляется с подобными заданиями. Поэтому вы можете работать с комплексными числами фактически точно так же, как и с действительными.

Комплексные числа в MathCAD: подробности и тонкости

Впрочем, конечно же, есть и некоторые тонкие моменты, связанные с отличиями в работе с комплексными и действительными числами. Самое главное из подобного рода отличий состоит, собственно говоря, в том, что операция извлечения корня с ними работает не совсем так, как надо — как, впрочем, и операция возведения в дробную степень, хотя для действительных чисел данные операции и абсолютно корректны. Дело в том, что на множестве комплексных чисел мы рассматриваем корень p n-й степени из числа z как множество решений уравнения pn = z. Если вы попробуете решить это уравнение с помощью оператора solve (хоть о нем мы говорили уже достаточно давно — думаю, вы еще не до конца забыли, как им пользоваться), то увидите, что для n-й степени это уравнение, согласно основной теореме алгебры, будет иметь ровно n решений. Если же для вычисления корня комплексного числа вы воспользуетесь операторами извлечения корня или возведения комплексного числа в дробную степень, то увидите, что подобные вычисления дадут вам только один корень из всех возможных, что не вполне корректно. Впрочем, в ряде практических задач вам будет нужен только один корень, но все равно его лучше получать с помощью solve, а затем уже выбирать среди результатов.

https://amdy.su/wp-admin/options-general.php?page=ad-inserter.php#tab-8

Ну, и напоследок такой вопрос: а как лучше обозначать мнимую единицу? Дело в том, что в литературе встречается два варианта ее обозначения: i и j. Первый более характерен для советских и постсоветских источников, второй — для зарубежных. Вполне может случиться так, что вам потребуется в вашем проекте использовать второе, а не первое, которое используется в MathCAD по умолчанию. Конечно же, эта мощная математическая среда позволяет нам изменить обозначение мнимой единицы на то, которое будет для нас наиболее удобным. Для того, чтобы поменять обозначение, нужно в меню Format выбрать пункт Result, а в появившемся окне на вкладке Display Options заменить параметр Imaginary Value. Вариантов этого параметра, конечно, не много — собственно, их всего два: либо i, либо j. Но больше вариантов, собственно говоря, и нету.

Итак, мы с вами познакомились с комплексными числами, а также с тем, как именно работать с ними в MathCAD’е. Вы смогли сами убедиться, что это совсем несложно, хотя, конечно, некоторые вычисления и имеют свои тонкости. Но тонкости есть везде, и главное — быть заранее готовым к тому, что есть немалый шанс с ними столкнуться. Поэтому, если вы внимательно читаете статьи серии «MathCAD — это просто», то будете хорошо подготовлены к встречам с различными неожиданностями в среде MathCAD. Успехов вам в работе с этим мощным математическим пакетом и интересных вычислений!

SF, spaceflyer@tut.by

Компьютерная газета. Статья была опубликована в номере 33 за 2008 год в рубрике soft

Система уравнений с комплексными числами маткад

MathCAD с одинаковым успехом вычисляет выражения с действительными и комплексными числами.

Комплексные числа можно записывать в любой принятой в математике форме:

– обычной (в виде суммы действительной и мнимой частей числа) – с=а+ b · i ;

– в тригонометрической форме – c = A ·( sin ( φ )+ i · cos (φ));

– в экспоненциальной форме – c = A · e i ·φ .

Для ввода мнимой единицы надо набрать с клавиатуры 1 i или 1 j и ввести число. При выведении курсора из области числа символ 1 исчезает, остается комплексное число в привычном виде (рис. 3.23 ).

расчет токов в цепи по уравнениям Кирхгофа ORIGIN:=1

Рис. 3. 23 Ввод комплексных чисел

В качестве примера рассмотрим расчет токов и напряжений в цепи переменного тока по законам Кирхгофа. В этом случае ЭДС в цепи Е, напряжение U , токи J , сопротивление Z – комплексные числа. ЭДС Е задана в экспоненциальной форме, но при нажатии клавиши=выводится в обычном виде. После ввода констант в комплексной форме все формулы записываются также, как и для действительных чисел. При расчете вектора напряжений на различных участках цепи по закону Ома использован оператор векторизации для расчета попарных произведений (рис. 3.24 ).

Расчет напряжений по закону Ома

без оператора векторизации выведено скалярное произведение векторов

это не аргумент функции—без вывод комплексно-сопряженных чисел

оператора векторизации не обойтись

Рис. 3. 24 Расчеты с векторами комплексных чисел

В MathCAD есть оператор преобразования комплексного числа в комплексно – сопряженное. Он не представлен на математической панели, а вызывается с помощью символа “ .

Модуль комплексного числа вычисляется оператором || вводимым с панелей Calculator (Калькулятор) или Matrix (Матрица). Тот же оператор позволяет вычислить модуль вектора или определитель матрицы.

Аргумент комплексного числа вычисляется по формуле встроенной функцией arg ( A ), которая выдает угол поворота вектора в системе координат Re – Im (рис. 3.25 ).

модуль комплексного числа. необходим оператор векторизации

аргумент комплексного числа

угол в радианах угол в градусах

Рис. 3. 25 Вычисление модуля и аргумента комплексных чисел

Функция polyroots в mathcad

Для нахождения корней полинома в MathCAD предназначена специальная функция polyroots (v). Она находит как действительные, так и комплексные корни полинома n-ой степени, коэффициенты которого хранятся в массиве v длиной n+1. Параметром данной функции является вектор-столбец коэффициентов полинома v.

Пример использования функции polyroots показан на рисунке 3.1.4. При решении задачи надо правильно формировать вектор-столбец коэффициентов полинома v, записывая в него значения коэффициентов, начиная коэффициентов при х в нулевой степени.

Решение систем уравнений

Системы уравнений в MathCAD решаются в следующем порядке:

1. Находится приближенное решение системы уравнений. Приближенное решение удобнее всего найти графически;

2. Записывается директива Given, и после нее записываются уравнения системы. Следует помнить, что вместо знака “равно” при записи уравнений используется знак “логическое равенство”, который набирается как + .

3. Записывается любое выражение, использующее функцию Find. Параметрами данной функции являются все переменные, входящие в систему. Функция возвращает вектор-столбец решений системы.

Рисунок 3.1.4 — Нахождение корней полинома при помощи функции

Пример 3.3 Найти решение системы уравнений

Процесс решения данной системы уравнений показан на рисунке 3.2.1

В результате функция Find вернула вектор-столбец и . Это значит, что решением системы уравнений являются значения и .

Символьное решение уравнений, неравенств и систем уравнений

Для символьного решения уравнений и неравенств надо выполнить следующее:

1. Вставить в рабочий лист структуру solve c панели инструментов Simbolic.

2. Ввести данные: слева – уравнение или неравенство, справа – переменную, относительно которой требуется его разрешить.

3. Щёлкнуть вне области решения, чтобы получить результат.

Рисунок 3.2.1 – Пример решения системы уравнений

При символьном решении уравнений и неравенств следует вводить знаки =, , находящиеся на панели инструментов Boolean.

При символьном решении системы уравнений после Find надо ввести с панели инструментов Simbolic.

Пример символьного решения уравнений, неравенств и систем уравнений показан на рисунке 3.3.1

Рисунок 3.3.1 – пример символьного решения уравнения, неравенства

и системы уравнений

Некоторые возможности MathCAD

В этом разделе приводятся краткие сведения о возможностях MathCAD, которые могут быть полезны в процессе обучения.

Комплексные числа в MathCAD

MathCAD Воспринимает комплексные числа в форме a+bi, где a и b – вещественные числа. Комплексные числа можно вводить, или получать в результате вычислений. При вводе мнимые числа заканчиваются символом i или j. Нельзя использовать i или j сами по себе для обозначения мнимой единицы, во избежание смешения с именами переменных. Для ввода мнимой единицы следует напечатать 1i или 1j. При выходе из поля ввода единица не будет отображаться. Можно использовать j вместо i, если это удобнее. Чтобы MathCAD показывал нужный вам символ (i или j), выберите «Формат числа» из меню «Математика», нажмите на кнопку «Глобальный» и переключите «Мн.ед.» на i или j.

MathCAD содержит следующие операторы и функции для работы с комплексными числами:

Re(z) – вещественная часть z.

Im(z) – мнимая часть z.

arg(z) – угол в комплексной плоскости между вещественной осью и z. Результат заключён между π и –π.

— модуль z. Чтобы записать модуль выражения, заключите его в выделяющую рамку и нажмите клавишу с вертикальной чертой «|».

— Комплексно сопряжённое к z= a+bi , то есть a-bi. Чтобы применить к выражению этот оператор, выделите его и нажмите клавишу двойные кавычки «”».

При использовании в комплексной области многие функции являются многозначными. Для многозначной функции MathCAD возвращает значение, составляющее на комплексной плоскости самый малый положительный угол с положительным направлением действительной оси, то есть главное значение.

Рисунок 3.4.1 – Комплексные числа в MathCAD

На рисунке 3.4.1 показан пример использования возможностей MathCADпри работе с комплексными числами.

Последнее изменение этой страницы: 2016-12-28; Нарушение авторского права страницы

Решение уравнений с помощью функции root(f(x),x)

Способы решения уравнений в MathCAD

Форматирование трехмерных графиков

Для форматирования графика необходимо дважды щелкнуть по области построения — появится окно форматирования с несколькими вкладками: Appearance,General,Axes,Lighting,Title,Backplanes,Special, Advanced, Quick Plot Data.

Назначение вкладки Quick Plot Data было рассмотрено выше.

Вкладка Appearance позволяет менять внешний вид графика. Поле Fill Options позволяет изменить параметры заливки, поле Line Option — параметры линий, Point Options — параметры точек.

Во вкладке General (общие) в группе View можно выбрать углы поворота изображенной поверхности вокруг всех трех осей; в группе Display asможно поменять тип графика.

Во вкладке Lighting (освещение) можно управлять освещением, установив флажок Enable Lighting (включить освещение) и переключатель On(включить). Одна из 6-ти возможных схем освещения выбирается в списке Lighting scheme(схема освещения).

В данном разделе мы узнаем, каким образом в системе MathCAD решаются простейшие уравнения вида F(x) = 0. Решить уравнение аналитически — значит найти все его корни, т.е. такие числа, при подстановке которых в исходное уравнение получим верное равенство. Решить уравнение графически — значит найти точки пересечения графика функции с осью ОХ.

Для решений уравнения с одним неизвестным вида F(x) = 0 существует специальная функция

root(f(x),x),

где f(x) — выражение, равное нулю;

Эта функция возвращает с заданной точностью значение переменной, при котором выражение f(x) равно 0.

Внимание. Если правая часть уравнения ¹0, то необходимо привести его к нормальному виду (перенести все в левую часть).

Перед использованием функции rootнеобходимо задать аргументу х начальное приближение. Если корней несколько, то для отыскания каждого корня необходимо задавать свое начальное приближение.

Внимание. Перед решением желательно построить график функции, чтобы проверить, есть ли корни (пересекает ли график ось Ох), и если есть, то сколько. Начальное приближение можно выбрать по графику поближе к точке пересечения.

Пример. Решение уравнения с помощью функции root представлено на рисунке 3.1. Перед тем как приступить к решению в системе MathCAD, в уравнении все перенесем в левую часть. Уравнение примет вид: .

Рис. 3.1. Решение уравнения при помощи функции root

Для одновременного нахождения всех корней полинома используют функцию Polyroots(v),где v — вектор коэффициентов полинома, начиная со свободного члена.Нулевые коэффициенты опускать нельзя.В отличие от функции root функция Polyroots не требует начального приближения.

Пример. Решение уравнения с помощью функции polyroots представлено на рисунке 3.2.

Рис. 3.2. Решение уравнения с помощью функции polyroots

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8526 — | 8113 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Для решения одного уравнения с одним неизвестным используется функция root. Аргументами этой функции являются выражение и переменная, входящая в выражение. Ищется значение переменной, при котором выражение обращается в ноль. Функция возвращает значение переменной, которое обращает выражение в ноль.

root( f(z), z) Возвращает значение z, при котором выражение или функция f(z) обращается в 0. Оба аргумента этой функции должны быть скалярами. Функция возвращает скаляр.

Первый аргумент есть либо функция, определенная где-либо в рабочем документе, или выражение. Выражение должно возвращать скалярные значения.

Второй аргумент — имя переменной, которое используется в выражении. Это та переменная, варьируя которую Mathcad будет пытаться обратить выражение в ноль. Этой переменной перед использованием функции root необходимо присвоить числовое значение. Mathcad использует его как начальное приближение при поиске корня.

Рассмотрим пример, как найти a — решение уравнения e x = x 3 . Для этого выполните следующие шаги:

  • Определите начальное значение переменной x. Введите x:3. Выбор начального приближения влияет на корень, возвращаемый Mathcad (если выражение имеет несколько корней).
  • Определите выражение, которое должно быть обращено в ноль. Для этого перепишите уравнение e x = x 3 в виде x 3 — e x = 0. Левая часть этого выражения и является вторым аргументом функции root
  • Определите переменную a как корень уравнения. Для этого введите a:root(x^3[Space]-e^x[Space],x).
  • Напечатайте a=, чтобы увидеть значение корня.

При использовании функции root имейте в виду следующее:

  • Удостоверьтесь, что переменной присвоено начальное значение до начала использования функции root.
  • Для выражения с несколькими корнями, например x 2 — 1 = 0, начальное значение определяет корень, который будет найден Mathcad. На Рисунке 1 приведен пример, в котором функция root возвращает различные значения, каждое из которых зависит от начального приближения.
  • Mathcad позволяет находить как комплексные, так и вещественные корни. Для поиска комплексного корня следует взять в качестве начального приближения комплексное число.
  • Задача решения уравнения вида f(x) = g(x) эквивалентна задаче поиска корня выражения f(x) — g(x) =0. Для этого функция root может быть использована следующим образом:

Функция root предназначена для решения одного уравнения с одним неизвестным. Для решения систем уравнений используйте методику, описанную в следующем разделе “Системы уравнений”. Для символьного решения уравнений или нахождения точного численного решения уравнения в терминах элементарных функций выберите Решить относительно переменной из меню Символика. См. Главу “Символьные вычисления”.

Рисунок 1: Использование графика и функции root для поиска корней уравнения.

Что делать, когда функция root не сходится

Mathcad в функции root использует для поиска корня метод секущей. Начальное значение, присвоенное переменной x, становится первым приближением к искомому корню. Когда значение выражения f(x) при очередном приближении становится меньше значения встроенной переменной TOL, корень считается найденным, и функция root возвращает результат.

Если после многих итераций Mathcad не может найти подходящего приближения, то появляется сообщение об ошибке “отсутствует сходимость”. Эта ошибка может быть вызвана следующими причинами:

  • Уравнение не имеет корней.
  • Корни уравнения расположены далеко от начального приближения.
  • Выражение имеет локальные максимумы или минимумы между начальным приближением и корнями.
  • Выражение имеет разрывы между начальным приближением и корнями.
  • Выражение имеет комплексный корень, но начальное приближение было вещественным (или наоборот).

Чтобы установить причину ошибки, исследуйте график f(x). Он поможет выяснить наличие корней уравнения f(x)=0 и, если они есть, то определить приблизительно их значения. Чем точнее выбрано начальное приближение корня, тем быстрее функция root будет сходиться к точному значению. roots;using plots to find

Некоторые советы по использованию функции root

В этом разделе приведены несколько советов по использованию функции root:

  • Для изменения точности, с которой функция root ищет корень, можно изменить значение встроенной переменной TOL. Если значение TOL увеличивается, функция root будет сходиться быстрее, но ответ будет менее точен. Если значение TOL уменьшается, функция root будет сходиться медленнее, но ответ будет более точен. Чтобы изменить значение TOL в определенной точке рабочего документа, используйте определение вида TOL := 0.01. Чтобы изменить значение TOL для всего рабочего документа, выберите из меню Математика команду Встроенные переменные и введите подходящее значение в поле TOL. Нажав “OK”, выберите из меню Математика команду Пересчитать всё, чтобы обновить все вычисления в рабочем документе с использованием нового значения переменной TOL.
  • Если уравнение имеет несколько корней, пробуйте использовать различные начальные приближения, чтобы найти их. Использование графика функции полезно для нахождения числа корней выражения, их расположения и определения подходящих начальных приближений. Рисунок 1 показывает пример. Если два корня расположены близко друг от друга, можно уменьшить TOL, чтобы различить их.
  • Если f(x) имеет малый наклон около искомого корня, функция может сходиться к значению r, отстоящему от корня достаточно далеко . В таких случаях для нахождения более точного значения корня необходимо уменьшить значение TOL. Другой вариант заключается в замене уравнения f(x)=0 на g(x)=0, где

Для выражения f(x) с известным корнем a нахождение дополнительных корней f(x) эквивалентно поиску корней уравнения h(x)=0, где h(x)=f(x)/(x-a). Подобный приём полезен для нахождения корней, расположенных близко друг к другу. Часто бывает проще искать корень выражения h(x), определенного выше, чем пробовать искать другой корень уравнения f(x)=0, выбирая различные начальные приближения.

Решение уравнений с параметром

Предположим, что нужно решать уравнение многократно при изменении одного из параметров этого уравнения. Например, пусть требуется решить уравнение для нескольких различных значений параметра a. Самый простой способ состоит в определении функции

Чтобы решить уравнение для конкретного значения параметра a, присвойте значение параметру a и начальное значение переменной x как аргументам этой функции. Затем найдите искомое значение корня, вводя выражение f(a,x)=.

Рисунок 2 показывает пример того, как такая функция может использоваться для нахождения корней исследуемого уравнения при различных значениях параметра. Обратите внимание, что, хотя начальное значение x непосредственно входит в определение функции, нет необходимости определять его в другом месте рабочего документа.

Рисунок 2: Определение функции пользователя с функцией root.

Нахождение корней полинома

Для нахождения корней выражения, имеющего вид

лучше использовать функцию polyroots, нежели root. В отличие от функции root, функция polyroots не требует начального приближения. Кроме того, функция polyroots возвращает сразу все корни, как вещественные, так и комплексные. На Рисунках 3 и 4 приведены примеры использования функции polyroots.

polyroots(v) Возвращает корни полинома степени . Коэффициенты полинома находятся в векторе v длины n+1. Возвращает вектор длины n, состоящий из корней полинома.

Функция polyroots всегда возвращает значения корней полинома, найденные численно. Чтобы находить корни символьно, используйте команду Решить относительно переменной из меню Символика. См. Главу “Символьные вычисления”.

Рисунок 3: Использование функции polyroots для решения задачи, изображенной на Рисунке 1.

Рисунок 4: Использование функции polyroots для поиска корней полинома.

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Функция polyroots в mathcad

Для нахождения корней полинома в MathCAD предназначена специальная функция polyroots (v). Она находит как действительные, так и комплексные корни полинома n-ой степени, коэффициенты которого хранятся в массиве v длиной n+1. Параметром данной функции является вектор-столбец коэффициентов полинома v.

Пример использования функции polyroots показан на рисунке 3.1.4. При решении задачи надо правильно формировать вектор-столбец коэффициентов полинома v, записывая в него значения коэффициентов, начиная коэффициентов при х в нулевой степени.

Решение систем уравнений

Системы уравнений в MathCAD решаются в следующем порядке:

1. Находится приближенное решение системы уравнений. Приближенное решение удобнее всего найти графически;

2. Записывается директива Given, и после нее записываются уравнения системы. Следует помнить, что вместо знака “равно” при записи уравнений используется знак “логическое равенство”, который набирается как + .

3. Записывается любое выражение, использующее функцию Find. Параметрами данной функции являются все переменные, входящие в систему. Функция возвращает вектор-столбец решений системы.

Рисунок 3.1.4 — Нахождение корней полинома при помощи функции

Пример 3.3 Найти решение системы уравнений

Процесс решения данной системы уравнений показан на рисунке 3.2.1

В результате функция Find вернула вектор-столбец и . Это значит, что решением системы уравнений являются значения и .

Символьное решение уравнений, неравенств и систем уравнений

Для символьного решения уравнений и неравенств надо выполнить следующее:

1. Вставить в рабочий лист структуру solve c панели инструментов Simbolic.

2. Ввести данные: слева – уравнение или неравенство, справа – переменную, относительно которой требуется его разрешить.

3. Щёлкнуть вне области решения, чтобы получить результат.

Рисунок 3.2.1 – Пример решения системы уравнений

При символьном решении уравнений и неравенств следует вводить знаки =, , находящиеся на панели инструментов Boolean.

При символьном решении системы уравнений после Find надо ввести с панели инструментов Simbolic.

Пример символьного решения уравнений, неравенств и систем уравнений показан на рисунке 3.3.1

Рисунок 3.3.1 – пример символьного решения уравнения, неравенства

и системы уравнений

Некоторые возможности MathCAD

В этом разделе приводятся краткие сведения о возможностях MathCAD, которые могут быть полезны в процессе обучения.

Комплексные числа в MathCAD

MathCAD Воспринимает комплексные числа в форме a+bi, где a и b – вещественные числа. Комплексные числа можно вводить, или получать в результате вычислений. При вводе мнимые числа заканчиваются символом i или j. Нельзя использовать i или j сами по себе для обозначения мнимой единицы, во избежание смешения с именами переменных. Для ввода мнимой единицы следует напечатать 1i или 1j. При выходе из поля ввода единица не будет отображаться. Можно использовать j вместо i, если это удобнее. Чтобы MathCAD показывал нужный вам символ (i или j), выберите «Формат числа» из меню «Математика», нажмите на кнопку «Глобальный» и переключите «Мн.ед.» на i или j.

MathCAD содержит следующие операторы и функции для работы с комплексными числами:

Re(z) – вещественная часть z.

Im(z) – мнимая часть z.

arg(z) – угол в комплексной плоскости между вещественной осью и z. Результат заключён между π и –π.

— модуль z. Чтобы записать модуль выражения, заключите его в выделяющую рамку и нажмите клавишу с вертикальной чертой «|».

— Комплексно сопряжённое к z= a+bi , то есть a-bi. Чтобы применить к выражению этот оператор, выделите его и нажмите клавишу двойные кавычки «”».

При использовании в комплексной области многие функции являются многозначными. Для многозначной функции MathCAD возвращает значение, составляющее на комплексной плоскости самый малый положительный угол с положительным направлением действительной оси, то есть главное значение.

Рисунок 3.4.1 – Комплексные числа в MathCAD

На рисунке 3.4.1 показан пример использования возможностей MathCADпри работе с комплексными числами.

Последнее изменение этой страницы: 2016-12-28; Нарушение авторского права страницы

Решение уравнений с помощью функции root(f(x),x)

Способы решения уравнений в MathCAD

Форматирование трехмерных графиков

Для форматирования графика необходимо дважды щелкнуть по области построения — появится окно форматирования с несколькими вкладками: Appearance,General,Axes,Lighting,Title,Backplanes,Special, Advanced, Quick Plot Data.

Назначение вкладки Quick Plot Data было рассмотрено выше.

Вкладка Appearance позволяет менять внешний вид графика. Поле Fill Options позволяет изменить параметры заливки, поле Line Option — параметры линий, Point Options — параметры точек.

Во вкладке General (общие) в группе View можно выбрать углы поворота изображенной поверхности вокруг всех трех осей; в группе Display asможно поменять тип графика.

Во вкладке Lighting (освещение) можно управлять освещением, установив флажок Enable Lighting (включить освещение) и переключатель On(включить). Одна из 6-ти возможных схем освещения выбирается в списке Lighting scheme(схема освещения).

В данном разделе мы узнаем, каким образом в системе MathCAD решаются простейшие уравнения вида F(x) = 0. Решить уравнение аналитически — значит найти все его корни, т.е. такие числа, при подстановке которых в исходное уравнение получим верное равенство. Решить уравнение графически — значит найти точки пересечения графика функции с осью ОХ.

Для решений уравнения с одним неизвестным вида F(x) = 0 существует специальная функция

root(f(x),x),

где f(x) — выражение, равное нулю;

Эта функция возвращает с заданной точностью значение переменной, при котором выражение f(x) равно 0.

Внимание. Если правая часть уравнения ¹0, то необходимо привести его к нормальному виду (перенести все в левую часть).

Перед использованием функции rootнеобходимо задать аргументу х начальное приближение. Если корней несколько, то для отыскания каждого корня необходимо задавать свое начальное приближение.

Внимание. Перед решением желательно построить график функции, чтобы проверить, есть ли корни (пересекает ли график ось Ох), и если есть, то сколько. Начальное приближение можно выбрать по графику поближе к точке пересечения.

Пример. Решение уравнения с помощью функции root представлено на рисунке 3.1. Перед тем как приступить к решению в системе MathCAD, в уравнении все перенесем в левую часть. Уравнение примет вид: .

Рис. 3.1. Решение уравнения при помощи функции root

Для одновременного нахождения всех корней полинома используют функцию Polyroots(v),где v — вектор коэффициентов полинома, начиная со свободного члена.Нулевые коэффициенты опускать нельзя.В отличие от функции root функция Polyroots не требует начального приближения.

Пример. Решение уравнения с помощью функции polyroots представлено на рисунке 3.2.

Рис. 3.2. Решение уравнения с помощью функции polyroots

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8526 — | 8113 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Для решения одного уравнения с одним неизвестным используется функция root. Аргументами этой функции являются выражение и переменная, входящая в выражение. Ищется значение переменной, при котором выражение обращается в ноль. Функция возвращает значение переменной, которое обращает выражение в ноль.

root( f(z), z) Возвращает значение z, при котором выражение или функция f(z) обращается в 0. Оба аргумента этой функции должны быть скалярами. Функция возвращает скаляр.

Первый аргумент есть либо функция, определенная где-либо в рабочем документе, или выражение. Выражение должно возвращать скалярные значения.

Второй аргумент — имя переменной, которое используется в выражении. Это та переменная, варьируя которую Mathcad будет пытаться обратить выражение в ноль. Этой переменной перед использованием функции root необходимо присвоить числовое значение. Mathcad использует его как начальное приближение при поиске корня.

Рассмотрим пример, как найти a — решение уравнения e x = x 3 . Для этого выполните следующие шаги:

  • Определите начальное значение переменной x. Введите x:3. Выбор начального приближения влияет на корень, возвращаемый Mathcad (если выражение имеет несколько корней).
  • Определите выражение, которое должно быть обращено в ноль. Для этого перепишите уравнение e x = x 3 в виде x 3 — e x = 0. Левая часть этого выражения и является вторым аргументом функции root
  • Определите переменную a как корень уравнения. Для этого введите a:root(x^3[Space]-e^x[Space],x).
  • Напечатайте a=, чтобы увидеть значение корня.

При использовании функции root имейте в виду следующее:

  • Удостоверьтесь, что переменной присвоено начальное значение до начала использования функции root.
  • Для выражения с несколькими корнями, например x 2 — 1 = 0, начальное значение определяет корень, который будет найден Mathcad. На Рисунке 1 приведен пример, в котором функция root возвращает различные значения, каждое из которых зависит от начального приближения.
  • Mathcad позволяет находить как комплексные, так и вещественные корни. Для поиска комплексного корня следует взять в качестве начального приближения комплексное число.
  • Задача решения уравнения вида f(x) = g(x) эквивалентна задаче поиска корня выражения f(x) — g(x) =0. Для этого функция root может быть использована следующим образом:

Функция root предназначена для решения одного уравнения с одним неизвестным. Для решения систем уравнений используйте методику, описанную в следующем разделе “Системы уравнений”. Для символьного решения уравнений или нахождения точного численного решения уравнения в терминах элементарных функций выберите Решить относительно переменной из меню Символика. См. Главу “Символьные вычисления”.

Рисунок 1: Использование графика и функции root для поиска корней уравнения.

Что делать, когда функция root не сходится

Mathcad в функции root использует для поиска корня метод секущей. Начальное значение, присвоенное переменной x, становится первым приближением к искомому корню. Когда значение выражения f(x) при очередном приближении становится меньше значения встроенной переменной TOL, корень считается найденным, и функция root возвращает результат.

Если после многих итераций Mathcad не может найти подходящего приближения, то появляется сообщение об ошибке “отсутствует сходимость”. Эта ошибка может быть вызвана следующими причинами:

  • Уравнение не имеет корней.
  • Корни уравнения расположены далеко от начального приближения.
  • Выражение имеет локальные максимумы или минимумы между начальным приближением и корнями.
  • Выражение имеет разрывы между начальным приближением и корнями.
  • Выражение имеет комплексный корень, но начальное приближение было вещественным (или наоборот).

Чтобы установить причину ошибки, исследуйте график f(x). Он поможет выяснить наличие корней уравнения f(x)=0 и, если они есть, то определить приблизительно их значения. Чем точнее выбрано начальное приближение корня, тем быстрее функция root будет сходиться к точному значению. roots;using plots to find

Некоторые советы по использованию функции root

В этом разделе приведены несколько советов по использованию функции root:

  • Для изменения точности, с которой функция root ищет корень, можно изменить значение встроенной переменной TOL. Если значение TOL увеличивается, функция root будет сходиться быстрее, но ответ будет менее точен. Если значение TOL уменьшается, функция root будет сходиться медленнее, но ответ будет более точен. Чтобы изменить значение TOL в определенной точке рабочего документа, используйте определение вида TOL := 0.01. Чтобы изменить значение TOL для всего рабочего документа, выберите из меню Математика команду Встроенные переменные и введите подходящее значение в поле TOL. Нажав “OK”, выберите из меню Математика команду Пересчитать всё, чтобы обновить все вычисления в рабочем документе с использованием нового значения переменной TOL.
  • Если уравнение имеет несколько корней, пробуйте использовать различные начальные приближения, чтобы найти их. Использование графика функции полезно для нахождения числа корней выражения, их расположения и определения подходящих начальных приближений. Рисунок 1 показывает пример. Если два корня расположены близко друг от друга, можно уменьшить TOL, чтобы различить их.
  • Если f(x) имеет малый наклон около искомого корня, функция может сходиться к значению r, отстоящему от корня достаточно далеко . В таких случаях для нахождения более точного значения корня необходимо уменьшить значение TOL. Другой вариант заключается в замене уравнения f(x)=0 на g(x)=0, где

Для выражения f(x) с известным корнем a нахождение дополнительных корней f(x) эквивалентно поиску корней уравнения h(x)=0, где h(x)=f(x)/(x-a). Подобный приём полезен для нахождения корней, расположенных близко друг к другу. Часто бывает проще искать корень выражения h(x), определенного выше, чем пробовать искать другой корень уравнения f(x)=0, выбирая различные начальные приближения.

Решение уравнений с параметром

Предположим, что нужно решать уравнение многократно при изменении одного из параметров этого уравнения. Например, пусть требуется решить уравнение для нескольких различных значений параметра a. Самый простой способ состоит в определении функции

Чтобы решить уравнение для конкретного значения параметра a, присвойте значение параметру a и начальное значение переменной x как аргументам этой функции. Затем найдите искомое значение корня, вводя выражение f(a,x)=.

Рисунок 2 показывает пример того, как такая функция может использоваться для нахождения корней исследуемого уравнения при различных значениях параметра. Обратите внимание, что, хотя начальное значение x непосредственно входит в определение функции, нет необходимости определять его в другом месте рабочего документа.

Рисунок 2: Определение функции пользователя с функцией root.

Нахождение корней полинома

Для нахождения корней выражения, имеющего вид

лучше использовать функцию polyroots, нежели root. В отличие от функции root, функция polyroots не требует начального приближения. Кроме того, функция polyroots возвращает сразу все корни, как вещественные, так и комплексные. На Рисунках 3 и 4 приведены примеры использования функции polyroots.

polyroots(v) Возвращает корни полинома степени . Коэффициенты полинома находятся в векторе v длины n+1. Возвращает вектор длины n, состоящий из корней полинома.

Функция polyroots всегда возвращает значения корней полинома, найденные численно. Чтобы находить корни символьно, используйте команду Решить относительно переменной из меню Символика. См. Главу “Символьные вычисления”.

Рисунок 3: Использование функции polyroots для решения задачи, изображенной на Рисунке 1.

Рисунок 4: Использование функции polyroots для поиска корней полинома.

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *