Как подключить файлы к проекту visual studio
Перейти к содержимому

Как подключить файлы к проекту visual studio

  • автор:

2.7 – Программы с несколькими файлами исходного кода

По мере того, как программы становятся больше, в целях организации или повторного использования их обычно разделяют на несколько файлов. Одним из преимуществ работы с IDE является то, что они значительно упрощают работу с несколькими файлами. Вы уже знаете, как создавать и компилировать однофайловые проекты. Добавить новые файлы в существующие проекты очень просто.

Лучшая практика

Когда вы добавляете в проект новые файлы исходного кода, давайте им расширение .cpp .

Для пользователей Visual Studio

В Visual Studio кликните правой кнопкой мыши на папке Исходные файлы (Source Files) в окне Обозревателя решений (Solution Explorer) и выберите Добавить (Add) → Создать элемент… (New Item…).

Рисунок 1 Добавление нового файла в проект в Visual Studio Рисунок 1 – Добавление нового файла в проект в Visual Studio

Убедитесь, что у вас выбран Файл C++ (.cpp). Дайте новому файлу имя, и он будет добавлен в ваш проект.

Рисунок 2 Создание нового файла в проекте в Visual Studio Рисунок 2 – Создание нового файла в проекте в Visual Studio

Примечание. Если вы создаете новый файл из меню Файл (File), а не из своего проекта в обозревателе решений, новый файл не будет добавлен в ваш проект автоматически. Вам придется добавить его в проект вручную. Для этого кликните правой кнопкой мыши на папке Исходные файлы (Source Files) в окне Обозревателя решений (Solution Explorer) и выберите Добавить (Add) → Существующий элемент (Existing Item), а затем выберите свой файл.

Теперь, когда вы компилируете свою программу, вы должны увидеть, как компилятор перечисляет имя вашего файла при компиляции.

Для пользователей Code::Blocks

В Code::Blocks перейдите в меню File (Файл) и выберите New (Создать) → File… (Файл…).

Рисунок 3 Создание нового файла в Code::Blocks Рисунок 3 – Создание нового файла в Code::Blocks

В диалоговом окне New from template (Создать из шаблона) выберите C/C++ source (Исходный файл C/C++) и нажмите Go (Перейти).

Рисунок 4 Создание нового исходного файла C/C++ в Code::Blocks Рисунок 4 – Создание нового исходного файла C/C++ в Code::Blocks

На этом этапе вы можете увидеть или не увидеть приветствие в диалоговом окне мастера создания исходного файла C/C++. Если да, щелкните Next (Далее).

Рисунок 5 Диалоговое окно мастера создания исходного файла C/C++ Рисунок 5 – Диалоговое окно мастера создания исходного файла C/C++

На следующей странице мастера выберите C++ и нажмите Next (Далее).

Рисунок 6 Выбор языка при создании нового исходного файла в Code::Blocks Рисунок 6 – Выбор языка при создании нового исходного файла в Code::Blocks

Теперь дайте новому файлу имя (не забудьте расширение .cpp ) и выберите все конфигурации сборки. Наконец, выберите Finish (Готово).

Рисунок 7 Указание имени файла и выбор конфигураций сборки Рисунок 7 – Указание имени файла и выбор конфигураций сборки

Теперь, когда вы будете компилировать свою программу, вы должны увидеть, как компилятор перечисляет имя вашего файла по мере компиляции.

Для пользователей GCC/G++

Из командной строки вы можете создать дополнительный файл самостоятельно, используя свой любимый редактор, и дать ему имя. Когда вы компилируете свою программу, вам нужно будет включить в строку компиляции все соответствующие исходные файлы. Например:

где main.cpp и add.cpp – это имена ваших исходных файлов, а main – имя выходного файла.

Пример с несколькими файлами

В уроке «2.6 – Предварительные объявления и определения» мы рассмотрели программу с одним исходным файлом, которая не компилируется:

Когда компилятор достигает вызова функции add в строке 5 в функции main , он не знает, что такое add , потому что мы определили add только в строке 9! Нашим решением было либо переупорядочить функции (поместив сначала add ), либо использовать для add предварительное объявление.

Теперь посмотрим на аналогичную программу из нескольких исходных файлов:

Ваш компилятор может решить сначала скомпилировать либо add.cpp , либо main.cpp . В любом случае main.cpp не скомпилируется, что приведет к той же ошибке компилятора, что и в предыдущем примере:

Причина точно такая же: когда компилятор достигает строки 5 файла main.cpp , он не знает, что такое идентификатор add .

Помните, что компилятор компилирует каждый файл отдельно. Он не знает о содержимом других исходных файлов и не запоминает что-либо, что он видел из ранее скомпилированных исходных файлов. Таким образом, даже если компилятор, возможно, видел определение функции add ранее (если он сначала скомпилировал add.cpp ), он этого не запомнил.

Эта ограниченная видимость и короткая память являются преднамеренными, чтобы файлы могли иметь функции или переменные, у которых одинаковые имена, но которые не конфликтуют друг с другом. В следующем уроке мы рассмотрим пример такого конфликта.

Наши варианты решения здесь такие же, как и раньше: поместить определение функции add перед функцией main или удовлетворить компилятор предварительным объявлением. В этом случае, поскольку функция add находится в другом файле, вариант изменения порядка определений не подходит.

Лучшее решение здесь – использовать предварительное объявление:

main.cpp (с предварительным объявлением):

add.cpp (остается прежним):

Теперь, когда компилятор компилирует main.cpp , он будет знать, что такое идентификатор add , и будет удовлетворен. Линкер соединит вызов функции add в main.cpp с определением функции add в add.cpp .

Используя этот метод, мы можем предоставить файлам доступ к функциям, которые находятся в другом файле.

Попробуйте скомпилировать add.cpp и main.cpp с предварительным объявлением. Если вы получили ошибку линкера, убедитесь, что вы правильно добавили add.cpp в свой проект или строку компиляции.

Что-то пошло не так!

Есть много вещей, которые могут пойти не так, когда вы в первый раз попытаетесь работать с несколькими файлами. Если вы попробовали приведенный выше пример и столкнулись с ошибкой, проверьте следующее:

1. Если вы получаете ошибку компилятора о том, что add не определена в main , вы, вероятно, забыли предварительное объявление для функции add в main.cpp .

2. Если вы получаете сообщение об ошибке компоновщика о том, что add не определена, например

2а. … наиболее вероятная причина в том, что add.cpp неправильно добавлен в ваш проект. При компиляции вы должны увидеть в списке компиляции и main.cpp , и add.cpp . Если вы видите только main.cpp , значит add.cpp определенно не компилируется. Если вы используете Visual Studio или Code::Blocks, вы должны увидеть add.cpp в списке в обозревателе решений / на панели проекта в левой части IDE. Если его не видно, кликните на проекте правой кнопкой мыши и добавьте этот файл, а затем попробуйте скомпилировать снова. Если вы компилируете из командной строки, не забудьте включить main.cpp и add.cpp в свою команду компиляции.

2b. … возможно, вы добавили add.cpp не в тот проект.

2c. … возможно, что файл не компилируется или не линкуется. Проверьте свойства файла и убедитесь, что файл настроен для компиляции/линковки. В Code::Blocks компиляция и линковка – это отдельные флажки, которые следует установить. В Visual Studio есть параметр «исключить из сборки» (exclude from build), для которого следует установить значение «нет» или оставить пустым.

3. Не пишите #include "add.cpp" в main.cpp . Это заставит компилятор вставить содержимое add.cpp непосредственно в main.cpp вместо того, чтобы рассматривать их как отдельные файлы.

Резюме

Когда компилятор компилирует программу из нескольких исходных файлов, он может компилировать эти файлы в любом порядке. Кроме того, он компилирует каждый файл отдельно, не зная, что находится в других файлах.

Мы будем много работать с несколькими файлами, как только перейдем к объектно-ориентированному программированию, поэтому сейчас самое подходящее время, чтобы убедиться, что вы понимаете, как добавлять и компилировать проекты с несколькими файлами.

Напоминание: всякий раз, когда вы создаете новый исходный файл (.cpp), вам нужно будет добавить его в свой проект, чтобы он компилировался.

Среды разработки для С

Одной из распространенных сред разработки для программирования на Windows является Visual Studio . В данном случае мы будем использовать бесплатную и полнофункциональную среду Visual Studio 2019 Community, которую можно найти по адресу https://visualstudio.microsoft.com/ru/vs/community/.

После загрузки и запуска установщика Visual Studio в нем необходимо отметить пункт Разработка классических приложений на C++ :

Установка С++ в Visual Studio

Выбрав все необходимые пункты, нажмем ОК для запуска установки. После установки Visual Studio создадим первый проект. Для этого откроем Visual Studio. На стартовом экране выберем тип Empty Project для языка C++:

Первый проект на Си в Visual Studio

На следующем экране в поле для имени проекта дадим проекту имя HelloApp и также можно указать расположение проекта. И затем нажмем на Create для создания проекта.

Первый проект на Си в Visual Studio

После этого Visual Studio создаст пустой проект. Добавим в него текстовый файл для набора исходного кода. Для этого в окне Solution Explorer (Обозреватель решений) нажмем правой кнопкой мыши на узел Source Files и в контекстом меню выберем Add -> New Item. :

Добавление файла на Си в Visual Studio

Затем нам откроется окно для добавления нового элемента:

Добавление исходного файла на Си в Visual Studio

Здесь нам надо выбрать пункт C++ File(.cpp) , а внизу окна укажем для файла имя hello.c . Как правило, исходные файлы на Си имеют расширение .с . Оно указывает, что этот файл содержит исходный код на языке С, и он будет обрабатываться соответствующим компилятором.

Настройка проекта

После добавления файла изменим опции проекта. Для этого перейдем к пункту меню Project -> Properties

Свойства проекта на Си в Visual Studio

В окне свойств проекта в левой части перейдем к секции С/С++ и далее к пункту Advanced :

Установка компилятора для языка Си в VS

В правой части окна для поля Compile As установим значение Compile as C Code (/TC) . Тем самым мы говорим, чтобы по умолчанию исходный код компилировался именно как код С, а не С++.

После установки этого значения нажмем на кнопку «Применить», чтобы новые настройки конфигурации вступили в силу.

Для работы с языком Си может быть полезна еще одна настройка — установка стандарта языка. Перейдем к пункту С/С++ -> Language . Здесь в поле C Language Standard мы можем установить один из доступных стандартов для языка Си, который будет применяться для компиляции:

Настройка стандарта языка Си в Visual Studio

Правда, в данном случае он не играет значения, поэтому оставим для этого параметра настройку по умолчанию.

Определение кода программы

После добавления файла >hello.c проект будет иметь следующую структуру:

Структура проекта на Си в Visual Studio

Вкратце пробежимся по этой структуре. Окно Solution Explorer содержит в решение. В данном случае оно называется HelloApp. Решение может содержать несколько проектов. По умолчанию у нас один проект, который имеет то же имя — HelloApp. В проекте есть ряд узлов:

External Dependencies : отображает файлы, которые используются в файлах исходного кода, но не являются частью проекта

Header Files : предназначена для хранения заголовочных файлов с расширением .h

Resource Files : предназначена для хранения файлов ресурсов, например, изображений

Source Files : хранит файлы с исходным кодом

Теперь определим в файле hello.c простейший код, который будет выводить строку на консоль:

Здесь использован весь тот код, который был рассмотрен в предыдущих темах про компиляцию с помощью GCC.

Теперь запустим программу. Для этого в Visual Studio нажмем на сочетание клавиш Ctrl+F5 или выберем пункт меню Debug -> Start Without Debugging :

Запуск программы на Си в Visual Studio

И в итоге Visual Studio передаст исходный код компилятору, который скомпилирует из кода исполняемый файл exe, который потом будет запущен на выполнение. И мы увидим на запущенной консоли наше сообщение:

Первое приложение на языке программирования Си

Затем в проекте в папке x64/Debug мы можем увидеть скомпилированный файл exe, который мы можем запускать независимо от Visual Studio:

Настраиваем удобную сборку проектов в Visual Studio

Эта статья является руководством по настройке сборки C++ проектов Visual Studio. Частично она сводилась из материалов разрозненных статей на эту тему, частично является результатом реверс-инжениринга стандартных конфигурационных файлов Студии. Я написал ее в основном потому что полезность документации от самой Microsoft на эту тему стремится к нулю и мне хотелось иметь под рукой удобный референс к которому в дальнейшем можно будет обращаться и отсылать других разработчиков. Visual Studio имеет удобные и широкие возможности для настройки по-настоящему удобной работы со сложными проектами и мне досадно видеть что из-за отвратительной документации эти возможности очень редко сейчас используются.

В качестве примера попробуем сделать так чтобы в Студию можно было добавлять flatbuffer schema, а Студия автоматически вызывала flatc в тех случаях когда это нужно (и не вызывала — когда изменений не было) и позволяла задавать настройки напрямую через File Properties

Оглавление

* Level 1: лезем внутрь .vcxproj файлов
Поговорим о .props файлах
Но зачем вообще разделять .vcxproj и .props?
Делаем настройку проекта читабельнее
Делаем удобным подключение сторонних библиотек
Project Templates — автоматизируем создание проектов
* Level 2: настраиваем кастомную компиляцию
Традиционный подход
Знакомимся с MSBuild targets
Попробуем создать target для сборки .proto файлов
Доводим наш модельный пример до ума
U2DCheck и tlog файлы
Финализуем наш кастомный .target
А что насчет CustomBuildStep?
Правильное копирование файлов
* Level 3: интегрируемся с GUI от Visual Studio
Вытаскиваем настройки из недр .vcxproj в Configuration Properties
Объясняем Студии про новые типы файлов
Ассоциируем настройки с индивидуальными файлами
* Level 4: расширяем функциональность MSBuild

https://amdy.su/wp-admin/options-general.php?page=ad-inserter.php#tab-8

ЗАМЕЧАНИЕ: все приведенные в статье примеры проверялись в VS 2017. В рамках моего понимания они должны работать и в более ранних версиях студии начиная по крайней мере с VS 2012, но обещать я этого не могу.

Level 1: лезем внутрь .vcxproj файлов

Давайте взглянем внутрь типичного .vcxproj автоматически сгенеренного Visual Studio.

Довольно нечитаемое месиво, не правда ли? И это ведь еще очень небольшой и практически тривиальный файл. Попробуем превратить его во что-то более читабельное и удобное для восприятия.

Поговорим о .props файлах

Для этого обратим пока внимание на то что взятый нами файл — это обычный XML-документ и его можно логически разделить на две части, в первой из которых перечисляются настройки проекта, а во второй — входящие в него файлы. Давайте эти половинки разделим физически. Для этого нам понадобится уже встречающийся в коде тэг Import который является аналогом сишного #include и позволяет включить один файл в другой. Скопируем наш .vcxproj в какой-нибудь другой файл и уберем из него все объявления относящиеся к файлам входящим в проект, а из .vcxproj-а в свою очередь наоборот уберем все кроме объявлений относящихся к файлам собственно входящим в проект. Получившийся у нас файл с настройками проекта но без файлов в Visual Studio принято называть Property Sheets и сохранять с расширением .props. В свою очередь в .vcxproj мы поставим соответствующий Import

Его можно упростить еще больше, убрав лишние XML-элементы. К примеру свойство «PrecompiledHeader» объявляется сейчас 4 раза для разных вариантов конфигурации (release / debug) и платформы (win32 / x64) но каждый раз это объявление одно и то же. Кроме того у нас здесь используется несколько разных ItemGroup тогда как в реальности вполне достаточно одного элемента. В результате приходим к компактному и понятному .vcxproj который просто перечисляет 1) входящие в проект файлы, 2) то чем является каждый из них (плюс настройки специфичные для конкретных отдельных файлов) и 3) содержит в себе ссылку на хранящиеся отдельно настройки проекта.

Перезагружаем проект в студии, проверяем сборку — все работает.

Но зачем вообще разделять .vcxproj и .props?

Поскольку в сборке ничего не поменялось, то на первый взгляд может показаться что мы поменяли шило на мыло, сделав бессмысленный «рефакторинг» файла в который нам до этого собственно и не было никакой нужды заглядывать. Однако допустим на минутку что в наш solution входит более одного проекта. Тогда, как несложно заметить, несколько разных .vcxproj-файлов от разных проектов могут использовать один и тот же .props файл с настройками. Мы отделили правила сборки используемые в solution от исходного кода и можем теперь менять настройки сборки для всех однотипных проектов в одном месте. В подавляющем большинстве случаев подобная унификация сборки — это хорошая идея. К примеру добавляя в solution новый проект мы в одно действие тривиально перенесем в него подобным образом все настройки из уже существующих в solution проектов.

Но что если нам все же нужны разные настройки для разных проектов? В этом случае мы можем просто создать несколько разных .props-файлов для разных типов проектов. Поскольку .props-файлы могут совершенно аналогичным образом Import-ить другие .props-файлы, то довольно легко и естественно можно выстроить «иерархию» из нескольких .props-файлов, от файлов описывающих общие настройки для всех проектов в solution до узкоспециализированных версий задающих специальные правила для всего одного-двух проектов в solution. В MSBuild действует правило что если одна и та же настройка объявляется во входном файле дважды (скажем вначале импортится в base.props а затем объявляется повторно в derived.props который import-ит в своем начале base.props) то более позднее объявление перекрывает более раннее. Это позволяет легко и удобно задавать произвольные иерархии настроек просто перекрывая в каждом .props файле все необходимые для данного .props-а настройки не заботясь о том что они могли быть где-то уже объявлены ранее. В числе прочего где-нибудь в .props-ах разумно импортировать стандартные настройки окружения Студии которые для C++-проекта будут выгледеть вот так:

Отмечу что на практике весьма удобно класть собственные .props файлы в ту же папку что и .sln файл

Делаем настройку проекта читабельнее

Теперь когда нам больше не требуется возиться с каждым проектом по отдельности мы можем уделить больше внимания настройке процесса сборки. И для начала я рекомендую дать с помощью .props-файлов вменяемые имена большинству интересных объектов в файловой системе относящихся к solution. Для этого нам следует создать тэг PropertyGroup с пометкой UserMacros:

Тогда в настройках проектов вместо конструкций вида «..\..\..\ThirdParty\protobuf\src\protoc.exe» мы сможем написать просто «$(ProtoBufRoot)\protoc.exe». Помимо большей читабельности это делает код намного мобильнее — мы можем свободно перемещать .vcxproj не боясь что у него слетят настройки и можем перемещать (или обновлять) Protobuf изменив всего одну строчку в одном из .props файлов.

При последовательном объявлении нескольких PropertyGroups их содержимое будет объединено — перезапишутся только макросы имена которых совпадают с ранее объявлявшимися. Это позволяет легко дополнять объявления во вложенных .props файлах не боясь потерять макросы уже объявленные ранее.

Делаем удобным подключение сторонних библиотек

Обычный процесс включения зависимости от thirdparty-библиотеки в Visual Studio частенько выглядит примерно вот так:

Процесс соответствующей настройки включает в себя редактирование сразу нескольких параметров находящихся на разных вкладках настроек проекта и потому довольно зануден. Вдобавок его обычно приходится проделывать по нескольку раз для каждой отдельно взятой конфигурации в проекте, так что нередко в результате подобных манипуляций оказывается что проект в Release-сборке собирается, а в Debug-сборке — нет. Так что это неудобный и ненадежный подход. Но как Вы наверное уже догадываетесь, те же самые настройки можно «упаковать» в props-файл. К примеру для библиотеки ZeroMQ подобный файл может выглядеть примерно так:

Обратите внимание что если мы просто определим тэг типа AdditionalLibraryDirectories в props-файле, то он перекроет все более ранние определения. Поэтому здесь используется чуть более сложная конструкция в которой тэг завершается последовательностью символов ;%(AdditionalLibraryDirectories) образующих ссылку тэга самого на себя. В семантике MSBuild этот макрос раскрывается в предыдущее значение тэга, так что подобная конструкция дописывает параметры в начало строки хранящейся в парамере AdditionalLibraryDirectories.

Для подключения ZeroMQ теперь достаточно просто импортировать данный .props файл.

И на этом манипуляции с проектом заканчиваются — MSBuild автоматически подключит необходимые заголовочные файлы и библиотеки и в Release и в Debug сборках. Таким образом потратив немного времени на написание zeromq.props мы получаем возможность надежно и безошибочно подключать ZeroMQ к любому проекту всего в одну строчку. Создатели Студии даже предусмотрели для этого специальный GUI который называется Property Manager, так что любители мышки могут проделать ту же операцию в несколько кликов.

Правда как и остальные инструменты Студии этот GUI вместо читабельного однострочника добавит в код .vcxproj что-то вроде

Так что я предпочитаю добавлять ссылки на сторонние библиотеки в .vcxproj файлы вручную.

Аналогично тому что уже обсуждалось ранее, работа с ThirdParty-компонентами через .props файлы позволяет так же легко в дальнейшем обновлять используемые библиотеки. Достаточно отредактировать единственный файл zeromq.props — и сборка всего solution синхронно переключится на новую версию. К примеру в наших проектах сборка проекта через этот механизм увязана с менеджером зависимостей Conan который собирает необходимый набор thirdparty-библиотек по манифесту зависимостей и автоматически генерирует соответствующие .props-файлы.

Project Templates — автоматизируем создание проектов

Править вручную .vcxproj-файлы созданные Студией конечно довольно скучно (хотя при наличии навыка и недолго). Поэтому в Студии предусмотрена удобная возможность по созданию собственных шаблонов для новых проектов, которые позволяют провести ручную работу по настройке .vcxproj лишь один раз, после чего повторно использовать ее одним кликом в любом новом проекте. В простейшем случае для этого даже не надо ничего править вручную — достаточно открыть проект который нужно превратить в шаблон и выбрать в меню Project \ Export Template. В открывшемся диалоговом окне можно задать несколько тривиальных параметров вроде имени для шаблона или строки которая будет показываться в его описании, а так же выбрать, будет ли вновь созданный шаблон сразу добавлен в диалоговое окно «New Project». Созданный таким способом шаблон создает копию использованного для его создания проекта (включая все файлы входящие в проект), заменяя в нем только имя проекта и его GUID. В довольно большом проценте случаев этого более чем достаточно.

При более детальном рассмотрении сгенерированного Студией шаблона можно легко убедиться в том что это просто zip архив в котором лежат все файлы использованные в шаблоне и один дополнительный конфигурационный файл с расширением .vstemplate. В этом файле хранится список метаданных проекта (вроде использованной иконки или строки с описанием) и список файлов которые необходимо создать при создании нового проекта. Например,

Обратите внимание на параметр ReplaceParameters=«true». В данном случае он применяется только к vcxproj-файлу который выглядит следующим образом:

На месте GUID и RootNamespace как видите стоят не конкретные значения, а «заглушки» $guid1$ и $safeprojectname$. При использовании шаблона, Студия проходит по файлам помеченным ReplaceParamters=«true», ищет в них заглушки вида $name$ и заменяет их на вычисляемые значения по специальному словарю. По умолчанию Студия поддерживает не очень много параметров, но при написании Visual Studio Extensions (о чем мы поговорим чуть позже) туда нетрудно добавить сколько угодно своих собственные параметров вычисляемых (или вводимых пользователем) при запуске диалога по созданию нового проекта из шаблона. Как можно увидеть в файле .vstemplate, тот же словарь может использоваться и для формирования имени файла что позволяет, в частности, сформировать шаблону уникальные имена .vcxproj-файлов для разных проектов. При задании ReplaceParameters=false файл указанный в шаблоне будет просто скопирован без дополнительной обработки.

Полученный ZIP-архив с шаблоном можно добавить в список шаблонов известных Студии одним из нескольких способов. Проще всего просто скопировать этот файл в папку %USERPROFILE%\Documents\Visual Studio XX\Templates\ProjectTemplates. Стоит заметить, что несмотря на то что в этой папке Вы найдете множество разных подпапок совпадающих по названиям с папками в окне создания нового проекта, по факту шаблон следует положить просто в корневую папку поскольку положение шаблона в дереве новых проектов определяется Студией из тэгов ProjectType и ProjectSubType в .vstemplate-файле. Этот способ удобнее всего подходит для создания «персональных» шаблонов уникальных только для Вас и если Вы выберете в диалоге Export Template галочку «Automatically import template into Visual Studio» то Студия именно это и сделает, поместив созданный при экспорте zip-архив в эту папку с шаблонами. Однако делиться такими шаблонами с коллегами путем их ручного копирования конечно не очень удобно. Поэтому давайте познакомимся с чуть более продвинутым вариантом — создадим Visual Studio Extension (.vsix)

Для создания VSIX нам понадобится установить опциональный компонент Студии который так и называется — средства для разработки Visual Studio Extensions:

После этого в разделе Visual C# \ Extensibility появится вариант «VSIX project». Обратите внимание, что несмотря на свое расположение (C#), он используется для создания любых расширений, в том числе и наборов шаблонов проектов на C++.

В созданном VSIX проекте можно делать массу самых разных вещей — к примеру, создать свое собственное диалоговое окно которое будет использоваться для настройки создаваемых по шаблону проектов. Но это отдельная огромная тема для обсуждения которую я не буду в этой статье затрагивать. Для создания же шаблонов в VSIX все устроено предельно просто: создаем пустой VSIX проект, открываем файл .vsixmanifest и прямо в GUI задаем все данные для проекта. Вписываем метаданные (название расширения, описание, лицензия) на вкладке Metadata. Обратите внимание на расположенное в правом верхнем углу поле «Version» — его желательно указать правильно, поскольку Студия впоследствии использует именно его для определения того какая версия расширения установлена на компьютере. Затем идем на вкладку Assets и выбираем «Add new Asset», с Type: Microsoft.VisualStudio.ProjectTemplate, Source: File on filesystem, Path: (имя к zip-архиву с шаблоном). Нажимаем OK, повторяем процесс пока не добавим в VSIX все желаемые шаблоны.

После этого остается выбрать Configuration: Release и скомандовать Build Solution. Код писать не требуется, править конфигурационные файлы вручную — тоже. На выходе получается переносимый файл с расширением .vsix, который является, по сути, инсталлятором для созданного нами расширения. Созданный файл будет «запускаться» на любом компьютере с установленной Студией, показывать диалог с описанием расширения и лицензией и предлагать установить его содержимое. Разрешив установку — получаем добавление наших шаблонов в диалоговое окно «Создать новый проект»

Подобный подход позволяет легко унифицировать работу большого количества человек над проектом. Для установки и использования шаблонов от пользователя не требуется никакой квалификации кроме пары кликов мышкой. Установленное расширение можно посмотреть (и удалить) в диалоге Tools \ Extensions and Updates

Level 2: настраиваем кастомную компиляцию

ОК, на этом этапе мы разобрались как организованы vcxproj и props файлы и научились их организовывать. Давайте теперь предположим что мы хотим добавить в наш проект парочку .proto схем для сериализации объектов на основе замечательной библиотеки Google Protocol Buffers. Напомню основную идею этой библиотеки: Вы пишите описание объекта («схему») на специальном платформонезависимом мета-языке (.proto-файл) которая компилируется специальным компилятором (protoc.exe) в набор .cpp / .cs / .py / .java / etc. файлов которые реализуют сериализацию / десериализацию объектов по этой схеме в нужном языке программирования и которые Вы можете использовать в своём проекте. Таким образом при компиляции проекта нам нужно первым делом позвать protoc который создаст для нас набор .cpp файлов которые мы в дальнейшем будем использовать.

Традиционный подход

Классическая реализация «в лоб» прямолинейна и состоит в том чтобы просто добавить вызов protoc в pre-build step для проекта которому нужны .proto-файлы. Примерно вот так:

  • Требуется явно указывать список обрабатываемых файлов в команде
  • При изменении этих файлов билд НЕ будет пересобран автоматически
  • При изменении ДРУГИХ файлов в проекте которые Студия распознает как исходные коды, напротив, без нужды будет выполнен pre-build step
  • Сгенерированные файлы не входят по умолчанию в сборку проекта
  • Если мы включим сгенерированные файлы в проект вручную, то проект будет выдавать ошибку когда мы его будем открывать в первый раз (поскольку файлы еще не сгенерированы первой сборкой).
Знакомимся с MSBuild targets

С точки зрения MSBuild, сборка любого проекта состоит из последовательности сборки сущностей которые называются build targets, сокращенно targets. К примеру сборка проекта может включать в себя выполнение таргета Clean который удалит оставшиеся от предыдущих билдов временные файлы, затем выполнение таргета Compile который скомпилирует проект, затем таргета Link и наконец таргета Deploy. Все эти таргеты вместе с правилами по их сборке не фиксированы заранее а определяются в самом .vcxproj файле. Если Вы знакомы с nix-овой утилитой make и Вам на ум в этот момент приходит слово «makefile», то Вы совершенно правы: .vcxproj является XML-вариацией на тему makefile.

Но стоп-стоп-стоп скажет тут сбитый с толку читатель. Как это так? Мы просмотрели до этого .vcxproj в простом проекте и там не было ни target-ов ни какого-либо сходства с классическим makefile. О каких target-ах тогда может идти речь? Оказывается что они просто «спрятаны» вот в этой строчке включающей в .vcxproj набор стандартных target-ов для сборки C++ — кода.

«Стандартный» билд-план предлагаемый Студией довольно обширен и предлагает большой набор правил для компиляции C++-кода и «стандартных» таргетов типа Build, Clean и Rebuild к которым умеет «цепляться» Студия. Этот набор часто известен под собирательным названием toolset и заменяя в импорте toolset можно заставить Студию компилировать один и тот же проект с помощью другой версии Студии или, к примеру, интеловским компилятором или Clang. Кроме того при желании от стандартного toolset-а можно вообще отказаться и написать свой собственный toolset с нуля. Но мы будем рассматривать в этой статье более простой вариант в котором мы ничего не будем заменять, а лишь дополним стандартные правила необходимыми нам дополнениями.

  • Список входов (inputs)
  • Список выходов (outputs)
  • Зависимости от других targets (dependencies)
  • Настройки target-а
  • Последовательность фактических шагов выполняемых target-ом (tasks)

то мы добавляем (Include) файл protobuf_tests.cpp в список входов (inputs) данного таргета, а когда пишем

то присваем значение «Use» настройке ClCompile.PrecompiledHeader которую target затем превратит в флаг /Yu переданный компилятору cl.exe.

Попробуем создать target для сборки .proto файлов

Добавление нового target-а реализуется с помощью тэга target:

Традиционно target-ы выносят в подключаемый файл с расширением .targets. Не то чтобы это было строго необходимо (и vcxproj и targets и props файлы внутри являются равнозначным XML-ем), но это стандартная схема именования и мы будем ее придерживаться. Чтобы в коде .vcxproj файла теперь можно было писать что-то вроде

созданный нами target необходимо добавить в список AvailableItemName

Нам также понадобится описать что же конкретно мы хотим сделать с нашими входными файлами и что должно получиться на выходе. Для этого в MSBuild используется сущность которая называется «task». Таска — это какое-то простое действие которое нужно сделать в ходе сборки проекта. К примеру «создать директорию», «скомпилировать файл», «запустить команду», «скопировать что-то». В нашем случае мы воспользуемся таской Exec чтобы запустить protoc.exe и таской Message чтобы отобразить этот шаг в логе компиляции. Укажем так же что запуск данного target-а следует провести сразу после стандартного таргета PrepareForBuild. В результате у нас получится примерно вот такой файлик protobuf.targets

Мы использовали здесь довольно нетривиальный оператор «%» (batching operator) который означает «для каждого элемента из списка» и автоматически добавляемые метаданные. Идея тут в следующем: когда мы записываем код вида

то мы этой записью добавляем в список с названием «ProtobufSchema» дочерний элемент «test.proto» у которого есть дочерний элемент (метадата) AdditionalData содержащая строку «Test». Если мы напишем «ProtobufSchema.AdditionalData» то мы получим доступ к записи «Test». При этом помимо явно объявленных нами метаданных AdditionalData, хитрый MSBuild ради нашего удобства автоматически добавляет к записи еще добрый десяток полезных часто используемых дочерних элементов описанных вот здесь из числа которых мы использовали Identity (исходная строка), Filename (имя файла без расширения) и FullPath (полный путь к файлу). Запись же со знаком % заставляет MSBuild применить описанную нами операцию к каждому элементу из списка — т.е. к каждому .proto файлу по отдельности.

в protobuf.props, переписываем наши proto-файлы в .vcxproj-е на тэг ProtobufSchema

и проверяем сборку

1>—— Rebuild All started: Project: protobuf_test, Configuration: Debug x64 ——
1>Compiling schema test.proto
1>Compiling schema test2.proto
1>pch.cpp
1>protobuf_test.cpp
1>protobuf_test.vcxproj -> S:\Temp\msbuild\protobuf_msbuild_integration\x64\Debug\protobuf_test.exe
========== Rebuild All: 1 succeeded, 0 failed, 0 skipped ==========

Ура! Заработало! Правда наши .proto файлы теперь стали не видны в проекте. Лезем в .vcxproj.filters и вписываем там по аналогии

Перезагружаем проект — файлы снова видны.

Доводим наш модельный пример до ума

Впрочем на самом деле я немного схитрил. Если не создать вручную перед началом билда папку generated, то билд на самом деле падает

1>. \protobuf_test\protobuf.targets(13,6): error MSB3073: The command «. \ThirdParty\protobuf\bin\protoc.exe —cpp_out=.\generated test.proto» exited with code 1.

Чтобы это исправить добавим вспомогательный target который создаст необходимую папку

С помощью свойства DependsOnTargets мы указываем что перед тем как запускать любую из задач GenerateProtobuf следует запустить PrepareToGenerateProtobuf, а запись @(ProtobufSchema) ссылается на список ProtobufSchema целиком, как единую сущность используемую как вход для этой задачи, так что запущена она будет лишь один раз.

Перезапускам сборку — работает! Давайте попробуем сделать теперь еще раз Rebuild, чтобы уж на этот раз точно во всем убедиться

1>—— Rebuild All started: Project: protobuf_test, Configuration: Debug x64 ——
1>pch.cpp
1>protobuf_test.cpp
1>protobuf_test.vcxproj -> S:\Temp\msbuild\protobuf_msbuild_integration\x64\Debug\protobuf_test.exe
========== Rebuild All: 1 succeeded, 0 failed, 0 skipped ==========

Эм, а куда же пропали наши новые таски? Небольшая отладка — и мы видим что таски на самом деле запускаются MSBuild, но не выполняются поскольку в указанной нами выходной папке уже есть сгенерированные файлы. Проще говоря в Rebuild у нас не работает Clean для .\generated файлов. Исправим это, добавив еще один таргет

Проверяем — работает. Clean очищает созданные нами файлы, Rebuild пересоздает их заново, повторный вызов Build не запускает без нужды пересборку еще раз.

========== Build: 0 succeeded, 0 failed, 1 up-to-date, 0 skipped ==========

Вносим правку в один из C++ файлов, пробуем сделать Build еще раз

1>—— Build started: Project: protobuf_test, Configuration: Debug x64 ——
1>protobuf_test.cpp
1>protobuf_test.vcxproj -> S:\Temp\msbuild\protobuf_msbuild_integration\x64\Debug\protobuf_test.exe
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

.proto-файл не менялся, поэтому protoc не перезапускался, все ожидаемо. Пробуем теперь изменить .proto файл.

========== Build: 0 succeeded, 0 failed, 1 up-to-date, 0 skipped ==========

Интересно что если запустить сборку MSBuild через командную строку вручную, а не через UI из Студии то такой проблемы не будет — MSBuild корректно пересоберет необходимые .pp.cc файлы. Если мы поменяем какой-нибудь .cpp то запустившийся в студии MSBuild пересоберет не только его, но и .props файл который мы меняли раньше

1>—— Build started: Project: protobuf_test, Configuration: Debug x64 ——
1>Compiling schema test.proto
1>protobuf_test.cpp
1>protobuf_test.vcxproj -> S:\Temp\msbuild\protobuf_msbuild_integration\x64\Debug\protobuf_test.exe
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

U2DCheck и tlog файлы

Оказывается что создатели Visual Studio посчитали что вызывать MSBuild на каждый чих слишком накладно и… реализовали собственную «быструю проверку» на то нужно ли собирать проект или нет. Она называется U2DCheck и если по ее мнению проект не менялся, то Студия просто не станет запускать MSBuild для этого проекта. Обычно U2DCheck работает настолько «тихо» что про ее существование мало кто догадывается но в реестре можно включить полезный флажок который заставит U2DCheck выводить более подробные отчеты.

В своей работе U2DCheck опирается на специальные .tlog файлы. Их легко можно найти в intermediate-output папке (имя_проекта).tlog и чтобы U2DCheck корректно реагировал на изменения в исходных файлах нам надо сделать в этой папке запись в один из read tlog — файлов, а чтобы U2DCheck корректно реагировал на удаление выходных файлов — запись в одном из write tlog — файлов.

Чертыхнувшись, возвращаемся к соответствующей правке нашего target-а

Проверяем — работает: правка .props файла триггерит необходимый ребилд, сборка в отсутствие правки показывает что проект up-to-date. В данном примере для простоты я не стал писать write tlog отслеживающий удаление созданных при компиляции файлов, но он добавляется в target аналогичным образом.

Начиная с Visual Studio 2017 update 15.8 в MSBuild была добавлена новая стандартная таска GetOutOfDateItems которая автоматизирует эту черную магию, но поскольку это произошло совсем недавно то практически все кастомные .target-ы продолжают работать с .tlog файлами вручную.

При желании можно так же полностью отключить U2DCheck для любого проекта добавив одну строчку в поле ProjectCapability

Однако в этом случае Студия будет гонять MSBuild для этого проекта и всех зависящих от него при каждой сборке и да, U2DCheck добавляли не просто так — это работает не так быстро как мне хотелось бы.

Финализуем наш кастомный .target

Получившийся у нас результат вполне работоспособен, но его есть еще куда совершенствовать. К примеру в MSBuild существует режим «выборочной сборки» когда в командной строке указывается что требуется собрать не весь проект в целом, а лишь отдельные конкретно выбранные в нем файлы. Поддержка этого режима требует чтобы таргет проверял содержимое списка @(SelectedFiles).

Помимо этого в нашем исходном коде встречается довольно много повторяющих друг друга строк которые должны совпадать. Правила хорошего тона рекомендуют дать всем этим сущностям читабельные имена и адресовать по этим именам. Для этого часто создается отдельный специальный таргет который создает и заполняет вспомогательный список всеми именами которые понадобятся в дальнейшем.

Наконец мы все еще не реализовали обещанную в самом начале задумку — автоматическое включение сгенерированных файлов в проект. Мы уже можем #include-ить сгенерированные protobuf-ом заголовочные файлы зная что они будут автоматически созданы до того как дело дойдет до компиляции, но с линковщиком этот номер не проходит :). Поэтому просто дописываем сгенерированные файлы в список ClCompile.

Общие настройки здесь были вынесены в PropertyGroup, а списки входных и выходных файлов заполняет новый target ComputeProtobufInput. Попутно (чтобы продемонстрировать работу со списками выходных файлов) была добавлена генерация кода из схемы для интеграции с python. Запускаем и проверяем что все работает правильно

1>—— Rebuild All started: Project: protobuf_test, Configuration: Debug x64 ——
1>Compiling schema test.proto
1>Compiling schema test2.proto
1>pch.cpp
1>protobuf_test.cpp
1>test.pb.cc
1>test2.pb.cc
1>Generating Code.
1>protobuf_test.vcxproj -> S:\Temp\msbuild\protobuf_msbuild_integration\x64\Debug\protobuf_test.exe
1>Done building project «protobuf_test.vcxproj».
========== Rebuild All: 1 succeeded, 0 failed, 0 skipped ==========

А что насчет CustomBuildStep?

Надо сказать что разработчики из Майкрософт вполне здраво оценивали что все вышеописанное, хм, несколько нетривиально и плохо задокументировано и попытались облегчить жизнь программистов введя специальный таргет CustomBuildStep. В рамках этой концепции мы должны были бы в настройках файла отметить что наши .props файлы относятся к типу Custom Build Step

Затем следовало бы указать необходимые шаги по сборке во вкладке Custom Build Step

В .vcxproj-е это выглядит примерно вот так

  • CustomBuildStep может быть только один на весь проект
    • Соответственно так обработать можно лишь 1 тип файлов на весь проект
    • Включать такой step в .props файл используемый для подключения ThirdParty библиотеки нецелесообразно, т.к. разные библиотеки могут его перекрывать друг у друга
    Правильное копирование файлов

    Очень часто встречающейся разновидностью build target является копирование каких-нибудь файлов из одного места в другое. Например копирование файлов ресурсов в папку с собранным проектом или копирование thirdparty DLL к собранному бинарнику. И очень часто эту операцию реализуют «в лоб» через запуск консольной утилиты xcopy в Post-Build Targets. К примеру,

    Так делать не надо по тем же самым причинам по которым не надо пытаться запихивать в Post-build steps другие build targets. Вместо этого мы можем напрямую указать Студии что ей необходимо скопировать тот или иной файл. К примеру если файл напрямую входит в проект, то ему достаточно указать ItemType=Copy

    После нажатия кнопки apply появится дополнительная вкладка на которой можно настроить куда и как следует копировать выбранный файл. В коде .vcxproj-файла это будет выглядеть примерно так:

    Всё заработает «из коробки», включая правильную поддержку tlog-файлов. Внутри это реализовано по все тому же принципу «специальной стандартной таски для копирования файлов» что и Custom Build Step которую я критиковал буквально в предыдущем разделе, но поскольку копирование файлов — довольно тривиальная операция и мы не переопределяем саму операцию (копирование) а лишь меняем список входных и выходных файлов для нее то работает это неплохо.

    Замечу что при формировании списков файлов CopyFilesToFolder можно использовать wildcards. К примеру

    Добавление файлов в список CopyFileToFolders — пожалуй самый простой способ реализовать копирование при сборке проекта, в том числе в .props-файлах подключающих thirdparty-библиотеки. Однако если хочется получить больше контроля над происходящим, то еще одним вариантом является добавление в свои build target специализированной таски Copy. К примеру

    R сожалению таска Copy не поддерживает wildcards и не заполняет .tlog файлы. При желании это можно реализовать вручную,

    Однако работа с стандартным CopyFileToFolders обычно будет намного проще.

    Level 3: интегрируемся с GUI от Visual Studio

    Все то чем мы до сих пор занимались со стороны может показаться довольно унылой попыткой реализовать в не слишком подходящем для этого инструменте функциональность нормального make. Ручная правка XML-файлов, неочевидные конструкции для решения простых задач, костыльные tlog-файлы… Однако у билд-системы Студии есть и плюсы — к примеру после первоначальной настройки она обеспечивает получившимуся билд-плану неплохой графический интерфейс. Для его реализации используется тэг PropertyPageSchema о котором мы сейчас и поговорим

    Вытаскиваем настройки из недр .vcxproj в Configuration Properties

    Давайте попробуем сделать так чтобы мы могли бы редактировать свойство $(ProtobufOutputFolder) из «причесанной реализации protobuf.targets» не вручную в файле, а с комфортом прямо из IDE. Для этого нам потребуется написать специальный XAML-файл с описанием настроек. Открываем текстовый редактор и создаем файл с названием, к примеру, custom_settings.xml

    Помимо собственно тэга StringProperty который указывает Студии на существование настройки «ProtobufOutputFolder» с типом String и Subtype=Folder и объясняет то как ее следует показывать в GUI, данный XML-ник указывает что хранить эту информацию следует в project file. Помимо ProjectFile можно использовать еще UserFile — тогда данные будут записаны в отдельный файлик .vcxproj.user который по задумке создателей Студии предназначается для приватных (не сохраняемых в VCS) настроек. Подключаем описанную нами схему к проекту, дописав в наш protobuf.targets тэг PropertyPageSchema

    Для того чтобы наши правки вступили в силу перезапускаем Студию, загружаем наш проект, открываем project properties и видим…

    Да! Появилась наша страничка с нашей настройкой и ее значение по умолчанию было верно прочитано Студией. Пробуем ее изменить, сохраняем проект, смотрим .vcxproj…

    Как можно видеть по традиционному условию Condition, по умолчанию настройки ассоциированы с конкретной конфигурацией билда. Но при желании это можно перекрыть с помощью установки флага DataSource HasConfigurationCondition=«false». Правда в 2017 студии присутствует баг из-за которого настройки проекта могут не показываться если среди них нет хотя бы одной настройки ассоциированной с какой-то конфигурацией. К счастью эта настройка может быть невидимой.

    <?xml version=»1.0″ encoding=»utf-8″?>
    <Rule.DataSource>
    />
    </Rule.DataSource>
    <StringProperty Name=»ProtobufOutputFolder»
    DisplayName=»Protobuf Output Directory»
    Description=»Directory where Protobuf generated files are created.»
    Subtype=»folder»>
    <StringProperty.DataSource>
    />
    </StringProperty.DataSource>

    Настроек можно добавлять сколько угодно. Возможные типы включают BoolProperty, StringProperty (с опциональными подтипами «folder» и «file»), StringListProperty, IntProperty, EnumProperty и DynamicEnumProperty причем последний может заполняться на лету из любого списка доступного в .vcxproj. Подробнее об этом можно почитать здесь. Можно так же группировать настройки в разделы. Попробуем к примеру добавить еще одну настройку типа Bool

    Редактируем настройку, сохраняем проект — все работает как ожидалось

    Объясняем Студии про новые типы файлов

    До сих пор чтобы добавить в проект protobuf-файл нам необходимо было вручную прописывать в .vcxproj что это . Это легко исправить дописав к упомянутому выше .xml три тэга

    Перезапускаем студию, смотрим свойства у наших .proto файлов

    Как легко видеть файлы теперь верно распознаются как «Google Protobuf Schema». К сожалению соответствующий пункт не добавляется автоматически в диалог «Add new item», но если мы добавим в проект уже существующий .proto-файл (контекстное меню проекта \ Add \ Existing item… ) то он распознается и добавится правильно. Кроме того наш новый «тип файлов» можно будет выбрать в выпадающем списке Item type:

    Ассоциируем настройки с индивидуальными файлами

    Помимо настроек «для проекта в целом» совершенно аналогичным образом можно сделать «настройки для отдельного файла». Достаточно указать в тэге DataSource аттрибут ItemType.

    Сохраняем, смотрим содержимое .vcxproj

    Все работает как ожидалось.

    Level 4: расширяем функциональность MSBuild

    У меня никогда не возникало необходимости залезать в процесс сборки настолько глубоко, но раз уж статья так и так получилась немаленькой, то коротенько упомяну о последней возможности для кастомизации: расширение самого MSBuild. Помимо довольно обширной коллекции «стандартных» тасков, в MSBuild таски можно «импортировать» из разных источников с помощью тэга UsingTask. К примеру мы можем написать свое расширение для MSBuild, скомпилировать его в DLL-библиотеку и импортировать как-то вот так:

    Именно так реализовано большинство «стандартных» тасков предоставляемых Студией. Но таскать с собою кастомную DLL для сборки по очевидным причинам частенько неудобно. Поэтому в тэге UsingTask поддерживается штука которая называется TaskFactory. TaskFactory можно считать «компилятором для task-ов» — мы передаем ей на вход некий исходный «мета-код», а она по нему генерирует реализующий его объект типа Task. К примеру с помощью CodeTaskFactory можно воткнуть код написанной на C# таски прямо внутрь .props-файла.

    Если кто-то подобной функциональностью пользовался — отпишитесь об интересных use-case в комментариях.

    На этом всё. Надеюсь что мне удалось показать как при настройке MSBuild работу с крупным проектом в Visual Studio можно сделать простой и удобной. Если Вы соберетесь внедрять у себя что-то из описанного выше, то дам небольшой совет: для отладки .props, .targets и .vcxproj удобно выставить MSBuild «отладочный» уровень логгирования в котором он весьма подробно пошагово расписывает свои действия с входными и выходными файлами

    Спасибо всем кто дочитал до конца, надеюсь что получилось интересно :).

    Делитесь своими рецептами для msbuild в комментариях — я постараюсь обновлять пост чтобы он служил исчерпывающим гайдом по конфигурированию solution в Студии.

    Урок 1. Подключение библиотеки SFML к среде разработки Visual Studio 2013

    В этом уроке мы подключим библиотеку SFML (Simple and fast multimedia library) к среде разработки Microsft Visual Studio 2013:

    Microsoft Visual Studio 2013

    Microsoft Visual Studio 2013

    Скачиваем библиотеку http://www.sfml-dev.org/download/sfml/2.2/ (у меня это версия Visual C++ 12 (2013) – 32-bit);

    Распаковываем куда вам угодно (у меня D:/SFML-2.2/); на всякий случай старайтесь избегать русских букв в папках пути. (то есть C:/приветик/ – лучше не использовать)

    Запускаем Visual Studio 2013, файл->создать->проект->пустой проект (имя придумайте сами, у меня это sfmltest) .

    Так как мы создали пустой проект – нам негде даже писать код, поэтому нам необходимо добавить файл исходного кода:
    Добавляем исходный код – для этого слева в обозревателе решений находим вкладку «Файлы исходного кода»->правый клик->добавить->создать элемент->файл C++ (имя main.cpp)->добавить. ( Имя может быть любым , но опять же лучше всего английские буквы и главный файл называть “main”.)

    Далее вставляем вот этот тестовый код в файл main.cpp

    Не пытайтесь сейчас это запустить – словите ошибки.

    Для того, чтобы всё это работало – необходимо подключить библиотеку SFML.

    Заходим вверху «проект»->свойства “имя проекта”->свойства конфигурации->C++->общие

    В пункте «дополнительные каталоги включаемых файлов прописываем путь до раннее распакованного архива с библиотекой (+ \include.)

    У меня получилось так: D:\SFML-2.2\include

    В первой строке прописываем свой путь к sfml до папки include

    В первой строке прописываем свой путь к sfml до папки include

    Затем идем в компоновщик->общие и в пункте «дополнительные каталоги библиотек» прописываем путь к папке lib (у меня D:\SFML-2.2\lib);

    Указываем путь до lib файлов (библиотек)

    Указываем путь до lib файлов (библиотек)

    Далее идем в компоновщике во вкладку ввод и в первой строке «дополнительные зависимости» вписываем перед всеми библиотеками следующую строчку:

    Подключаем lib файлы к проекту

    Подключаем lib файлы к проекту

    Только что подключили основные необходимые для работы библиотеки. Есть еще звук и сеть, но о них поговорим позже.

    (Все действия мы делаем для конфигурации Debug. Если вам нужен релиз, или сразу две конфигурации – меняйте значение конфигурации, а затем проделайте все те же действия, что идут после вставки тестового кода)

    Последний штрих – идем во вкладку C++->препроцессор и в первой строке «определение препроцессора» в самом начале дописываем: SFML_DYNAMIC;

    (с SFML_STATIC у меня в Visual Studio 2013 проект не компилируется)

    Запустим и словим ошибку. Зато соберется проект и появится папка debug.

    Теперь идем в папку бинарников “bin”, которую вы скачали и распаковали с библиотекой (мой вариант D:\SFML-2.2\bin\) и копируем всё содержимое этой папки (dll файлы типа sfml-graphics-2.dll) в папку с вашим проектом в папку debug (после сборки появилась эта папка), но не в тот debug, где лежит файл с исходным кодом “main.cpp”, а тот, где появляется exe файл. (мой вариант C:\Users\Павел\Documents\Visual Studio 2013\Projects\sfmltest\debug\)

    В эту же папку копируем и вот эти файлы :

    (они скорее всего есть в bin (в sfml 2.1 раньше были, в 2.2 – нету), и должны работать, но если вдруг нет)

    (там в архиве еще и файл openal32.dll, он должен быть так же в папке bin изначально. он будет нужен нам потом, для работы со звуком).

    Теперь проект можно запустить и если вы всё сделали правильно, то увидите зелёный круг как на скриншоте ниже:

    6

    Теперь можно приступать к самому интересному:)

    На следующем уроке подробно разберем тестовый код, обязательно посмотрите. такое нельзя пропускать :)Ссылка ниже:

    Вопросы задавать на форуме. Весь мануал был для дебага, мы пока разрабатываем проект, а не выпускаем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *