Принципы объектно-ориентированного программирования
Когда речь заходит о классических паттернах проектирования, нельзя не вспомнить о самом объектно-ориентированном программировании. Ведь паттерны GoF являются паттернами именно объектно-ориентированного программирования. В функциональном же программировании есть свои собственные паттерны.
Вообще устроено все следующим образом: есть само объектно-ориентированное программирование. У него есть принципы. Из принципов объектно-ориентированного программирования следуют разобранные нам шаблоны GRASP (как вариант — SOLID принципы), из которых, в свою очередь, следуют шаблоны GoF. Из них же следует ряд интересных вещей, например, enterprise паттерны.
Объектно-ориентированная парадигма
Определение гласит, что «Объектно-ориентированное программирование – это парадигма программирования, в которой основной концепцией является понятие объекта, который отождествляется с предметной областью.»
Таким образом, система представляется в виде набора объектов предметной области, которые взаимодействуют между собой некоторым образом. Каждый объект обладает тремя cоставляющими: идентичность (identity), состояние (state) и поведение (behaviour).
Состояние объекта — это набор всех его полей и их значений.
Поведение объекта — это набор всех методов класса объекта.
Идентичность объекта — это то, что отличает один объект класса от другого объекта класса. С точки зрения Java, именно по идентичности определяется метод equals.
Принципы объектно-ориентированного программирования
Объектно-ориентированное программирование обладает рядом принципов. Представление об их количестве расходится. Кто-то утверждает, что их три (старая школа программистов), кто-то, что их четыре (новая школа программистов):
- Абстрация
- Инкапсуляция
- Наследование
- Полиморфизм
Инкапсуляция
Вопреки мнению многих собеседующихся (а иногда и собеседуемых), инкапсуляция это не «когда все поля приватные». Инкапсуляция является фундаментальнейшим принципом проектирования ПО, ее следы наблюдаются на только на уровне микро-, но и на уровне макропроектирования.
Научное определение гласит, что «Инкапсуляция – это принцип, согласно которому любой класс и в более широком смысле – любая часть системы должны рассматриваться как «черный ящик»: пользователь класса или подсистемы должен видеть только интерфейс (т.е. список декларируемых свойств и методов) и не вникать во внутреннюю реализацию.»
Таким образом, получается, что если класс A обращается к полям класса B напрямую, это приводит не к тому, что «нарушается информационная безопасность», а к тому, что класс A завязывается на внутренне устройство класса B, и попытка изменить внутреннее устройство класса B приведет к изменению класса А. Более того, класс A не просто так работает с полями класса B, он работает по некоторой бизнес-логике. То есть логика по работе с состоянием класса В лежит в классе А, и когда мы захотим переиспользовать класс В, это не удастся сделать, ведь без кусочка класса А класс В может быть бесполезным, что приведет к тому, что класс В придется отдавать вместе с классом А. Экстраполируя это на всю систему, получается, что переиспользовать можно будет только всю систему целиком.
Инкапсуляция является самым недооцененным принципом, который, к сожалению, мало кем интерпретируется правильно. Она позволяет минимизировать число связей между классами и подсистемами и, соответственно, упростить независимую реализацию и модификацию классов и подсистем.
Наследование
Наследование — это возможность порождать один класс от другого с сохранением всех свойств и методов класса-предка (суперкласса), добавляя при необходимости новые свойства и
методы.
Наследование является самым переоцененным принципом. Когда-то считалось, что «У идеального программиста дерево наследования уходит в бесконечность и заканчивается абсолютно пустым объектом», потому как когда-то люди не очень хорошо понимали то, что наследование — это способ выразить такое свойство реального мира как иерархичность, а не способ переиспользовать код, отнаследовав машину от холодильника, потому что у обоих предметов есть ручка. Наследования желательно по возможности избегать, потому что наследование является очень сильной связью. Для уменьшения количества уровней наследования рекомендуется строить дерево «снизу-вверх».
Полиморфизм
Полиморфизм — это возможность использовать классы – потомки в контексте, который был предназначен для класса – предка.
За самым садистским определением кроется возможность языка программирования для декомпозиции задачи и рефакторинга if’ов и switch’ей.
[Заметка] Основные понятия ООП
Объектно-ориентированное программирование (ООП) — это методология программирования, основанная на представлении программы в виде совокупности объектов, каждый из которых является экземпляром определенного класса, а классы образуют иерархию наследования.
Основные концепции
В центре ООП находится понятие объекта. Объект — это сущность, которой можно посылать сообщения и которая может на них реагировать, используя свои данные. Объект — это экземпляр класса. Данные объекта скрыты от остальной программы. Сокрытие данных называется инкапсуляцией. Наличие инкапсуляции достаточно для объектности языка программирования, но ещё не означает его объектной ориентированности — для этого требуется наличие наследования.Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм — возможность единообразно обрабатывать объекты с различной реализацией при условии наличия общего интерфейса.
Таким образом можно выделить три основные концепции ООП: наследие, инкапсуляция и полиморфизм.
- Инкапсуляция — свойство системы, позволяющее обьединить данные и методы, работающие с ними, в классе. В частности, некоторые языки подразумевают сокрытие эти компонентов от доступа из вне.
- Наследование — свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс — потомком, наследником, дочерним или производным классом.
- Полиморфизм — свойство системы использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта.
- Абстракция — выделение значимой информации и исключение из рассмотрения незначимой. В ООП под абстракцией подразумевается набор значимых характеристик объекта, доступный остальной программе.
- Класс — модель ещё не существующей сущности (объекта). Фактически он описывает устройство объекта, являясь своего рода чертежом.
- Объект — экземпляр класса.
SOLID
SOLID — аббревиатура пяти основных принципов проектирования классов в объектно-ориентированном программировании: Single responsibility, Open-closed, Liskov substitution, Interface segregation и Dependency inversion.
- Single responsibility principle, принцип единственной обязанности, обозначает, что каждый объект должен иметь одну обязанность и эта обязанность должна быть полностью инкапсулирована в класс. Все его сервисы должны быть направлены исключительно на обеспечение этой обязанности.
- Open-closed principle, принцип открытости-закрытости устанавливает следующее положение: программные сущности должны быть открыты для расширения, но закрыты для изменения. Существующий класс может быть изменён только для исправления ошибок, при изменении логики необходимо писать новый класс, который может наследоваться от первого.
- Liskov substitution principle, принцип подстановки Барбары Лисков: «Функции, которые используют базовый тип, должны иметь возможность использовать подтипы базового типа, не зная об этом.» Если есть класс A и отнаследованный от него класс B, если заменить все использования класса A на B, ничего не должно измениться в работе программы. Класс B должен лишь расширять функционал класса A.
- Interface segregation principle, принцип разделения интерфейса говорит о том, что слишком «толстые» интерфейсы необходимо разделять на более маленькие и специфические, чтобы клиенты маленьких интерфейсов знали только о методах, которые необходимы им в работе.
- Dependency inversion principle, принцип инверсии зависимостей устанавливает правило, абстракции не должны зависеть от деталей, а детали должны зависеть от абстракций. Проще говоря, следует избавляться от композиции, заменяя её на агрегацию.
Агрегирование
В ООП под агрегировием подразумевают методику создания нового класса из уже существующих классов путём включения, называемого также делегированием. Об агрегировании также часто говорят как об «отношении принадлежности» по принципу «у машины есть корпус, колёса и двигатель». На базе агрегирования реализуется методика делегирования, когда поставленная перед внешним объектом задача перепоручается внутреннему объекту, специализирующемуся на решении задач такого рода. Существует два типа агрегирования:
- Агрегация (агрегирование по ссылке) — отношение «часть-целое» между двумя равноправными объектами, когда один объект (контейнер) имеет ссылку на другой объект. Оба объекта могут существовать независимо: если контейнер будет уничтожен, то его содержимое — нет.
- Композиция (агрегирование по значению) — более строгий вариант агрегирования, когда включаемый объект может существовать только как часть контейнера. Если контейнер будет уничтожен, то и включённый объект тоже будет уничтожен.
Закон Деметры
Общее описание правила: Объект A не должен иметь возможность получить непосредственный доступ к объекту C, если у объекта A есть доступ к объекту B и у объекта B есть доступ к объекту C.
Закон Деметры для функций требует, что метод М объекта О должен вызывать методы только следующих типов объектов:
- Собственно самого О.
- Параметров М.
- Других объектов, созданных в рамках М.
- Прямых компонентных объектов О.
- Глобальных переменных, доступных О, в пределах М.
Что такое шаблон проектирования?
Шаблон проектирования, он же паттерн (design pattern), в разработке программного обеспечения — повторимая архитектурная конструкция, представляющая собой решение проблемы проектирования в рамках некоторого часто возникающего контекста.
Виды полиморфизма
Ad hoc (лат. «специально для этого») — вид полиморфизма, в котором полиморфная функция может работать с аргументами различного типа за счет переопределения. То есть одноименные функции с различными типами аргументов распознаются как разные функции.
Параметрический полиморфизм — вид полиморфизма, в котором полиморфная функция может работать с аргументами различного типа на основе поведения, а не значения, апеллируя лишь к необходимым ей свойствам аргументов, то есть исполнять физически один и тот же код для данных разных типов.
Полиморфизм подтипов — Полиморфизм включения (inclusion polymorphism) является обобщённой формализацией подтипизации и наследования. То есть функция умеет работать с конкретным типом и всеми его наследниками.
Объектно-ориентированное программирование для самых маленьких
Вы когда-нибудь замечали, что на собеседованиях задают одни и те же клишированные вопросы?
Уверен, вы поняли, что я имею ввиду.
Ну вот, к примеру:
Кем вы видите себя через 5 лет?
Боже, ответ на этот вопрос станет моим главным недостатком.
Конечно, эти вопросы до ужаса тривиальны и не вызывают ничего, кроме раздражения, но они помогают работодателям лучше вас понять. А именно — ваше текущее состояние, жизненную позицию, взгляд на будущее и т.д.
Отвечая на эти вопросы, вы должны быть очень осторожны, так как из-за невнимательность вы можете рассказать что-то такое, о чем позже пожалеете.
В сегодняшней статье я хочу разобрать похожий «клишированный» вопрос:
Каковы основные принципы объектно-ориентированного программирования?
Я был по обе стороны стола, когда звучал этот вопрос. Он звучит настолько часто, что не знать ответа на него — просто невозможно.
В 90% случаев его задают новичкам, потому что он помогает разъяснить три вопроса:
- Готовился ли кандидат к этому интервью?
Если ответ дается незамедлительно — кандидат ответственно подошел к делу. - Прошел ли кандидат начальный этап?
Понимание принципов объектно-ориентированного программирования (ООП) показывает, что кандидат прошел начальный этап — теперь он видит вещи с более продвинутой точки зрения. - Его понимание ООП находится на глубоком или поверхностном уровне?
Уровень компетентности по данному вопросу часто равен уровню компетентности по большинству других. Доверьтесь мне.
Пришло время озвучить 4 принципа ООП: инкапсуляция, абстракция, наследование и полиморфизм.
Для junior-разработчика слова могут показаться страшными и сложными. Вдобавок, при поиске ответа в Интернете, чрезмерно длинные объяснения в Википедии удваивают путаницу.
Вот почему я хочу дать простое, короткое и четкое объяснение для каждого из приведенных принципов. Может показаться, что они звучат чересчур просто, будто бы я разговариваю с маленьким ребенком, но именно такую формулировку я бы хотел услышать от кандидата на собеседовании.
Инкапсуляция
Допустим, у нас есть некая программа. У нее есть объекты, которые общаются между собой, в соответствии с правилами, установленными в программе.
Объект самостоятельно управляет своим внутренним состоянием, с помощью методов — и никто другой не может трогать его, если на это нет особого разрешения. Если другой захочет с ним взаимодействовать, ему нужно будет использовать разрешенные методы. Но (по умолчанию) менять внутреннее состояние нельзя.
Теперь допустим, что мы играем в Sims. У нас есть семья из нескольких людей и кошки. Они общаются друг с другом. Мы хотим применить инкапсуляцию, поэтому инкапсулируем всю логику «cat» в класс Cat. Это выглядит следующим образом:
Здесь внутренним состоянием кошки являются частные(private) переменные: настроение(mood), голод(hungry) и энергия(energy). Она также имеет частный(private) метод meow (). Кошка может вызвать его в любой момент, когда захочет, другие классы не могут говорить кошке, когда ей можно мяукать.
То, что им можно делать, определяется в публичных(public) методах sleep (), play () и feed (). Каждый из них каким-то образом влияет на внутреннее состояние кошки и может вызвать meow (). Таким образом, устанавливается связь между внутренним состоянием объекта и публичными методами.
Вот что такое инкапсуляция.
Абстракция
В объектно-ориентированном программировании, зачастую, у программ очень большой объем, и объекты много общаются между собой. Как вы понимаете, поддерживать такую кодовую базу в течение долгих лет — с постоянными изменениями — трудно.
Абстракция нацелена на решение этой проблемы.
Применение абстракции означает, что нужно отбросить незначимые характеристики объекта и оставить только значимые. Данные обрабатываются функцией высокого уровня с помощью вызова функций низкого уровня.
Представьте кофеварку. Когда она варит кофе, под ее корпусом творится много вещей. Но от вас требуется лишь насыпать кофе и нажать кнопку.
Данный механизм должен быть неприхотлив в использовании, а также редко меняться со временем. Подумайте об этом, как о наборе публичных(public) методов, которые любой другой класс может вызывать, не “зная”, как они работают.
Хотите еще один пример? Возьмите свой смартфон.
Каждый день вы бесчисленное количество раз проводите пальцами по экрану. Что в этот момент происходит внутри смартфона? Рядовому пользователю не нужно это знать, так как ему дан определенный перечень действий для работы с гаджетом.
Наследование
Итак, мы разобрались с двумя принципами ООП, осталось еще два.
Наследование позволяет создать новый класс (производный класс) на основе уже существующего (родительский класс).
Производный класс берет все от родительского, но имеет дополнительные характеристики. Это нужно для того, чтобы просто немного улучшить старый класс, а не создавать с нуля новый.
На данном примере, «обычный» преподаватель делится на «частного» и «публичного». «Частный» работает индивидуально с каждым студентом, а «публичный» со всеми в одно время. Эти классы имеют новые уникальные характеристики, не присущие родительскому классу.
Полиморфизм
На греческом, полиморфизм означает «многообразие форм».
Мы с вами узнали, что такое наследование, и успешно применяем его на практике. Но возникает одна проблема.
Представим, что у нас есть родительский класс и несколько производных. Мы хотим использовать коллекцию или, по-другому, список, который содержит «микс» всех этих классов. Или у нас есть метод, осуществляемый для родительского класса, но мы бы хотели использовать его и для производного.
Эту проблему можно решить, используя полиморфизм.
Полиморфизм позволяет использовать объекты с одинаковыми характеристиками в разных направлениях.
Общие свойства объектов объединяются в систему, которую могут называть по-разному — интерфейс, класс.
Данный принцип позволяет повысить коэффициент повторного использования кода.
Взгляните на эскиз с геометрическими фигурами. Они повторно используют общий интерфейс для расчета площади поверхности и периметра:
Имея в распоряжении эти фигуры, наследующие интерфейс родительского класса, мы можем создать коллекцию (список) смешанных треугольников, окружностей и прямоугольников. И относиться к ним, как к одному и тому же типу объектов.
Затем, если потребуется вычислить площадь какого-либо элемента, эта коллекция (список) найдет и выполнит правильный метод. Если элемент является треугольником, выполняется метод CalculateSurface (). Если это круг, выполняется метод CalculateSurface (). И так далее.
Вместо того, чтобы писать класс для каждого конкретного типа следует создать типы, которые будут реализованы во время выполнения программы.
Надеюсь, мое «детское» объяснение вам помогло. Используйте его при прохождении собеседования и должность, фактически, вам обеспечена!
Что дальше?
Вы готовы к собеседованию, знаете ответ на любой вопрос, рубашка и пиджак поглажены, резюме сто раз перечитано и подкорректировано, но вот незадача — никто не звонит с предложением о работе.
В следующей статье мы поговорим о том, как выделиться из толпы и, что ожидает увидеть работодатель в junior-разработчике.
Что такое объекты и классы: 1‑я часть гайда по ООП
Почти всё современное программирование построено на принципах ООП, поэтому их должен понимать каждый разработчик. Узнайте основы из этой статьи.
Фото: Sonja Flemming / NBCUniversal / Getty Images
Это первая статья из серии, посвящённой объектно-ориентированному программированию. Она предназначена для тех, кто хочет понять суть этой парадигмы разработки, а не просто научиться использовать классы и объекты.
Цикл состоит из статей, посвящённых различным аспектам ООП:
Все примеры в этой серии написаны на языке C#. Для наглядности они будут связаны с разработкой игр, потому что именно в играх (хотя далеко не только в них) активно используются объекты.
Перед тем как приступать к изучению ООП, убедитесь, что знакомы со следующими понятиями:
- переменные и типы данных,
- условные конструкции,
- циклы,
- коллекции (желательно).
Работа будет проходить в Visual Studio 2019, но вполне подойдёт и VS 2017.
В конце каждой статьи будут задания, которые помогут закрепить тему. Выполнять их необязательно, но имейте в виду, что осилить ООП без практики просто невозможно. Если же вам лень выполнять задания, можете просто посмотреть наш вариант решения. Итак, поехали!
Введение в объектно-ориентированное программирование:
Что такое ООП
Объектно-ориентированное программирование (сокращённо ООП) — это парадигма разработки программного обеспечения, согласно которой приложения состоят из объектов.
На объектах и классах строится всё ООП. Поэтому давайте чётко обозначим, чем они отличаются друг от друга.
Класс — это тип данных, созданный пользователем. Он содержит разные свойства и методы, как, например, тип String или Int.
Объект — это экземпляр класса, или его копия, которая находится в памяти компьютера. Например, когда вы создаёте переменную типа String и присваиваете ей значение «Строка», то в памяти создаётся экземпляр класса String.
По-другому можно сказать, что объекты — это сущности, у которых есть свойства и поведение. Обычно объекты являются экземплярами какого-нибудь класса. Например, в игре может быть класс Character («Персонаж»), а его экземплярами будут hero или npc.
Свойства — это данные, которые связаны с конкретным объектом:
- здоровье,
- очки,
- деньги,
- сила,
- ловкость,
- интеллект,
- скорость,
- координаты.
Поведение объекта определяется с помощью методов — специальных блоков кода, которые можно вызывать из разных частей программы. Например, у того же объекта Character могут быть следующие методы:
- идти,
- атаковать,
- говорить,
- подобрать,
- выбросить,
- использовать.
Используя эти свойства и методы, можно значительно ускорить разработку, сделать код более читаемым. К тому же самому программисту проще составлять код, если он думает с помощью объектов.
Разработчики не пишут какую-то функцию, которая будет делать что-то для программы в целом. Вместо этого они мысленно разделяют приложение на отдельные компоненты и продумывают их свойства и поведение.
Такую парадигму используют многие популярные языки:
- C#,
- Java,
- Python,
- JavaScript,
- PHP,
- Kotlin,
- Swift,
- Objective-C,
- C++.
У нас также есть статья по ООП на Python. Поэтому если вы не любите C#, то можете изучить главные принципы на Python.
Плюсы и минусы объектно-ориентированного программирования
Плюсы | Минусы |
---|---|
Легко читается. Не нужно выискивать в коде функции и выяснять, за что они отвечают |
Потребляет больше памяти. Объекты потребляют больше оперативной памяти, чем примитивные типы данных |
Быстро пишется. Можно быстро создать сущности, с которыми должна работать программа |
Снижает производительность. Многие вещи технически реализованы иначе, поэтому они используют больше ресурсов |
Проще реализовать большой набор функций. Так как на написание кода уходит меньше времени, можно гораздо быстрее создать приложение с множеством возможностей |
Сложно начать. Парадигма ООП сложнее функционального программирования, поэтому на старт уходит больше времени |
Меньше повторений. Не нужно писать однотипные функции для разных сущностей |
|
Основные принципы объектно-ориентированного программирования
Всё объектно-ориентированное программирование строится на четырёх понятиях:
Чтобы стало понятнее, представим, что у нас есть класс «Кошка». В нём присутствуют несколько атрибутов — например, «окрас», «порода» и «возраст», а также методов — например, «спать». И когда у нас есть класс, мы можем создать сколько угодно его экземпляров с разными свойствами. Например, мы можем добавить несколько пород кошек:
Теперь перейдём к принципам ООП.
Абстракция
При создании класса мы упрощаем его до тех атрибутов и методов, которые нужны в этом конкретном коде, не пытаясь описать его целиком и отбрасывая всё второстепенное. Скажем, все кошки теоретически умеют охотиться, но если наша программа не предназначена для ловли мышей, то и прописывать этот метод незачем.
Подробно об абстракции и абстрактных классах в ООП можно прочитать в другой нашей статье.
Инкапсуляция
Доступ к данным объекта должен контролироваться, чтобы пользователь не мог изменить их в произвольном порядке и что-то поломать. Поэтому для работы с данными программисты пишут публичные методы, которые составляют интерфейс объекта.
Возвращаясь к нашим кошечкам. Мы можем разрешить изменять атрибут «возраст», но только в большую сторону (к сожалению, с годами никто не молодеет), а атрибут «порода» лучше открыть только для чтения — ведь порода кошки не меняется.
Подробно об инкапсуляции с примерами кода читайте в гайде Skillbox Media.
Наследование
Классы могут передавать свои атрибуты и методы классам-потомкам. Например, мы хотим создать новый класс «Домашняя кошка». Он практически идентичен классу «Кошка», но у него появляются новые атрибуты — «хозяин» и «кличка», а также метод «клянчить вкусняшку». Достаточно объявить «Домашнюю кошку» наследником «Кошки» и прописать новые атрибуты и методы — вся остальная функциональность перейдёт от родителя к потомку.
Больше о наследовании, с примерами кода и полезными практическими советами, читайте в статье «Наследование и ещё немного полиморфизма: 6-я часть гайда по ООП».
Полиморфизм
Этот принцип позволяет применять одни и те же команды к объектам разных классов, даже если они выполняются по-разному. Например, помимо класса «Кошка», у нас есть никак не связанный с ним класс «Попугай» — и у обоих есть метод «спать». Несмотря на то, что кошки и попугаи спят по-разному (кошка сворачивается клубком, а попугай сидит на жёрдочке), для этих действий можно использовать одну команду.
Объекты и классы: как их использовать
Классами в C# является практически всё — строки, числа, массивы и так далее. У каждого из них есть свой набор свойств (например, количество символов в строке или размер типа данных), а также методы, которые позволяют удобно работать с объектами класса (например, отсортировать массив или сложить два числа).
На основе «базовых» классов из C#, мы можем создавать свои. К примеру, возьмём числа типа Int64 и создадим с помощью них числа с плавающей точкой. Такой класс, конечно, уже есть, но мы можем переопределить его по-своему.
Изучая C#, разработчик в первый же день сталкивается с классами и объектами. Например, вот как выглядит первая программа любого новичка:
Здесь создаётся класс Program, у которого есть метод Main() — с него начинается выполнение программы, поэтому его называют точкой входа.
Для вывода текста используется следующий оператор:
Тут программа обращается к объекту Console и вызывает метод WriteLine(), который выводит переданное значение в консоль.
Также у объекта Console есть разные свойства:
Если бы не было объекта, было бы сложно определить, цвет какого фона и какого шрифта будет указываться, потому что их в программе может быть несколько.
Вот что выведет программа:
Как создать класс
Чтобы создать класс, откройте в Visual Studio меню Project и выберите пункт Add Class…:
Затем введите его название и нажмите Add:
Программа создаст отдельный файл с таким кодом:
Разберём его по порядку.
Namespace — это пространство имён, в котором находится класс. Оно необходимо для того, чтобы не возникало конфликтов с именами классов и переменных из подключаемых библиотек. Например, можно создать свой класс Console, и это не будет ошибкой, потому что он будет находиться в другом пространстве имён.
Затем в коде следует ключевое слово class, которое говорит о том, что нужно создать класс с определённым именем. В данном случае — Character.
Запомните! Имена классов принято писать с заглавной буквы, а объектов — со строчной.
Всё, что находится внутри фигурных скобок, относится к этому классу. Несмотря на то, что он пустой, уже можно создать его экземпляр — объект. Это называется объявлением или инстанцированием.
Чтобы объявить объект, нужно перейти к методу main и использовать следующий код:
Это похоже на то, как создаются переменные, но вместо типа данных указывается название класса. После знака присваивания указываются ключевое слово new и конструктор — специальный метод, который позволяет создать объект (о нём читайте в блоке о методах).
Как использовать поля и свойства класса
Теперь можно добавить поля и свойства для класса. Поле объявляется как обычная переменная:
Теперь у объекта есть свои поля, но к ним нельзя обратиться извне, потому что закрыт доступ (подробнее об этом — в статье про инкапсуляцию). Чтобы его открыть, нужно поставить перед каждым полем ключевое слово public. То же слово нужно поставить перед словом class.
Теперь можно вернуться к созданному объекту и обратиться к его полю здоровья:
Вот что будет выведено:
Если доступ к полям открыт, то с ними можно проводить вычисления или просто получать их значения. Если же нужно запретить доступ к определённым полям — используйте свойства.
Это специальные конструкции, которые позволяют обращаться к полям. Чтобы создать свойства, нужно сначала закрыть доступ к полям с помощью уровня доступа private — тогда они будут доступны только изнутри класса:
Теперь нельзя узнать здоровье или координаты объекта или изменить их. Чтобы снова открыть к ним доступ, создайте свойства:
Тут указывается уровень доступа public, затем тип свойства и его имя. Имена свойств принято писать с заглавной буквы, и они должны соответствовать имени поля. Внутри свойства встречаются две конструкции:
- get (геттер — позволяет получить значение свойства) — возвращает значение, которое идёт после ключевого слова return;
- set (сеттер — позволяет изменить значение) — указывает поле, которое нужно изменить, используя значение value.
Также тут можно заметить ключевое слово this, которое обозначает, что поле принадлежит этому объекту. Использовать его необязательно, но оно делает код более читаемым.
Такие манипуляции нужны для того, чтобы доступ к полям осуществлялся только так, как это нужно разработчику. Например, можно создать свойство, значение которого будет зависеть от выполнения условия:
Значение, которое будет возвращено, зависит от здоровья персонажа. Если оно ниже нуля, то будет передано false, а если выше — true.
Вот как это работает в программе:
Вот что будет выведено на экран:
Как создать метод
Теперь можно приступить к работе с поведением объектов. Оно реализуется с помощью методов — специальных блоков кода, которые позволяют избежать повторений в проекте.
Методы являются аналогами функций (возвращают значение) и процедур (не возвращают), но с той разницей, что они являются частью какого-то класса. Например, можно в классе Character создать метод Move(), который будет отвечать за движение персонажа.
Сначала указывается уровень доступа public, затем тип возвращаемого значения (в данном случае используется void, что говорит компилятору о том, что ничего возвращать не нужно). Затем идёт название метода и круглые скобки.
Внутри скобок указываются аргументы, которые принимает метод (в данном случае направление движения), — от переданных аргументов зависит результат работы метода.
Вот пример вызова метода:
Пользователь видит свои координаты и вводит направление движения, а персонаж двигается с помощью метода Move(). Всё это повторяется, пока не будет введена команда exit.
Вот как это выглядит:
Если же нужно, чтобы метод что-то возвращал, то указывается его тип и используется оператор return:
Этот метод принимает в качестве аргумента объект класса Character и сравнивает координаты. Если они равны, то метод возвращает значение true, а иначе — false.
Вот как это можно использовать:
Приведённая выше программа сравнит координаты двух объектов и выведет результат. Так как объекты создаются с одинаковыми полями, то они будут равны:
Конструктор объекта
В примере выше объект создаётся с уже заданными значениями, но есть возможность указывать свои параметры. Для этого используются конструкторы — специальные методы, которые запускаются при инстанцировании экземпляра класса. С их помощью можно передать объекту параметры и провести необходимые операции.
Вот пример того же класса с конструктором:
Конструктор выглядит как метод, но ему не нужно указывать тип возвращаемых данных — он возвращает созданный объект. Теперь, чтобы объявить экземпляр класса, нужно вызвать конструктор с указанным количеством аргументов:
Вот что выведет программа:
Домашнее задание
Создайте консольную игру, в которой игрок сможет управлять персонажем с помощью команд. Возможности, которые должны быть в игре:
- перемещение;
- атака;
- получение опыта за победу над врагами;
- повышение уровня и здоровья персонажа.
Что запомнить
Это лишь вступление в ООП, и ещё многое предстоит изучить, чтобы начать применять его в полную силу. Например, нужно понять, как технически работают классы, как они хранятся в памяти, почему их называют ссылочными типами и так далее.
ООП — сложная, но эффективная парадигма программирования. Её стоит знать всем, кто хочет создавать программы и найти работу, потому что почти все популярные языки её поддерживают. И несмотря на то, что некоторые разработчики утверждают, будто «ООП умерло», потребность в программистах, которые владеют этим подходом, продолжает расти.