Какого треугольника не существует со сторонами
Перейти к содержимому

Какого треугольника не существует со сторонами

  • автор:

Какого треугольника не существует

1)прямоугольный треугольник со сторонами 5см, 9см, 13см.. 2)равносторонний треугольник со сторонами 11 см. 3)треугольник со сторонами 2см, 5см, 8см.

треугольник со сторонами 2см, 5см, 8см (у треугольника, любая сторона, должна быть меньше суммы двух других сторон)

прямоугольный треугольник со сторонами 5см, 9см, 13см..

в первом случае примени теорию пифагора: квадрат суммы катетов = квадрату гипотенузе => 2^2+5^2=8^2 =>
4+25=64 => такого треугольника не существует (первого варианта)

Треугольник — определение и основные свойства и виды треугольника

Что такое треугольник знают дети уже в самом младшем возрасте, они умеют находить треугольник среди множества геометрических фигур. Но вот уже в школе по геометрии проходят треугольник и надо не просто узнавать треугольник, но и дать определение этому понятию.

Определение треугольника

Треугольник — это геометрическая фигура, окруженная тремя отрезками прямой (конечные точки каждых двух смежных отрезков соединены или перекрываются), называется треугольником. Точки пересечения отрезков называются вершинами треугольника, а сами отрезки между двумя соседними вершинами треугольника называются сторонами треугольника.

Посмотрите на треугольник на рисунке.

У него три вершины — , , и три стороны , и . У каждого треугольника есть имя — это имя образовано вершинами треугольника. Наш треугольник зовут ([а-бэ-цэ]). А треугольник на вот этом рисунке

будут звать ([эм-эн-ка]).

По правилам математической грамотности треугольник, как и любой другой многоугольник, следует называть, начиная с левого нижнего угла и называя все вершины по часовой стрелке.

В треугольнике можно провести особенные стороны — высоту, медиану и биссектрису. Начнем с высоты треугольника.

Высота треугольника

В каждом треугольнике можно провести три высоты. Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на противолежащую этой вершине сторону.

Например, в треугольнике , высотой будет отрезок .

А теперь проведем из каждой вершины по высоте — получим три высоты — больше провести высот нельзя.

В этом треугольнике три высоты , , .

Про биссектрисы и медианы поговорим в других статьях. Сейчас же давайте с вами рассмотрим каким бывает треугольник.

Виды треугольника

Виды треугольника могут быть по углам и по сторонам. То есть в первом случае вид треугольника зависит от того, какие в этом треугольнике углы, а во втором случае — какие в этом треугольнике стороны.

Виды треугольников по углам

В зависимости от того, все ли углы в треугольнике острые или есть тупой угол или угол, равный , треугольник бывает остроугольным, тупоугольным или прямоугольным.

Посмотрите на рисунки — перед вами три основных вида треугольника:

Виды треугольников по сторонам

Если у треугольника все стороны равны, то такой треугольник называют равносторонним или правильным. Если у треугольника равны только две стороны, то такой треугольник называют равнобедренным.

На рисунке показаны равносторонний и равнобедренный треугольники.

Свойства сторон треугольника

Треугольник имеет важные свойства и характеристики.

https://amdy.su/wp-admin/options-general.php?page=ad-inserter.php#tab-8

Устойчивость — это важное свойство треугольника, оно вам еще пригодится в курсе физики. Но вначале мы с ним знакомимся на уроках геометрии.

Треугольник устойчив на любой своей стороне — то есть чтобы вывести его из состояния равновесия надо приложить силу.

Свойства сторон: разница между любыми двумя сторонами треугольника меньше, чем третья сторона, а также любая сторона треугольника меньше, чем сумма двух других сторон. То есть:

Например, пусть наш треугольник имеет длины двух сторон , а см. В каком диапазоне будет размер третьей стороны треугольника?

Решение: согласно свойству сторон треугольника, получим:

Таким образом, третья сторона треугольника может быть в диапазоне от 4 до 10 см. Или в целых числах ее длина может быть 5, 6, 7, 8 или 9 см.

Правило существования треугольника

Используя свойство сторон треугольника мы можем определить существует ли треугольник с определенными сторонами.

Для проверки сложите длины самых коротких сторон и если сумма их больше длины самой большой стороны, тогда треугольник существует.

Например, существует ли треугольник с длинами сторон 3, 7 и 15 см?

Решение: проверим по свойству сторон треугольника: складываем две самые короткие стороны 3 и 7 см: 3+7=10, а 10 7 — треугольник с такими длинами сторон существует.

Свойство углов в треугольнике

Сумма всех углов в треугольнике равна .

Согласно этому свойству мы всегда можем, зная два угла в треугольнике, найти его третий угол. В прямоугольном треугольнике сумма двух острых углов всегда равна .

Например, пусть известно, что в треугольнике , , , нужно найти .

Так как сумма углов в треугольнике равна , то находим:

.

Ответ: .

Элементы композиции

Многие школьники спрашивают — а зачем нам знать про треугольник, как это может пригодиться в обычной жизни? Треугольник — простая фигура из которой можно составить более сложные. Это используется во многих сферах жизни, например, вы можете эргономично убирать в своей комнате, или красиво выкладывать бутерброды. Например, из двух равных треугольников можно составить параллелограмм.

А из двух равных прямоугольных треугольником — прямоугольник или квадрат. Два треугольника могут образовать трапецию, так как на рисунке. А вот какую фигурку можно смоделировать для программируемой игры — она вся сделана из треугольников:

Мы, рассмотрели самые важные свойства треугольника, и в дальнейшем изучим еще больше разных интересных свойств, закономерностей. Несмотря на свою простоту, треугольник таит в себе много загадок и открытий.

Существующие треугольники

Определение

Существующие треугольники — это такие треугольники,
существование которых можно доказать с помощью неравенств.


Например существование треугольника, изображенного на рисунке 1,
можно доказать с помощью неравенств: AB + BC > AC, AC + BC > AB, AB + AC > BC
Если эти три неравенства истинны значит треугольник существует,
иначе он не существует.

Также существование того или иного треугольника можно проверить с
помощью одного условия: Если большая сторона треугольника меньше
суммы двух других сторон, значит треугольник существует,
иначе он не существует.

Теорема

Для доказательства того, о чем мы говорили существует теорема под названием неравенство треугольника. Формулировка теоремы:
каждая сторона треугольника меньше суммы двух других сторон.

Докажем, что каждая сторона треугольника, изображенного на рисунке 2, меньше суммы двух других сторон:

Доказательство теоремы

  1. Проведем отрезок CD равный отрезку CB.
  2. △BCD — равнобедренный, значит ∠ CBD=∠CDB.
  3. Рассмотрим △ABD: ∠ ABD >∠ CBD, следовательно ∠ ABD >∠ CDB, то AB

Какого треугольника не существует со сторонами

Треугольника, с такими сторонами не существует:

а) 1;2;3; б) 5;5;6; в) 5; 4;3; г) 20; 21; 22

Комментарии

а) 1;2;3 не сущесвует

verlen1

Лучшие помощники

Этот сайт использует cookies. Политика Cookies Вы можете указать условия хранения и доступ к cookies в своем браузере.

Почему не существует треугольника со сторонами 124?

Треугольник существует только тогда, когда сумма двух его сторон больше третьей. Требуется сравнить каждую сторону с суммой двух других. Если хотя бы в одном случае сторона окажется больше либо равна сумме двух других, то треугольника с такими сторонами не существует.

Как узнать существует ли треугольник?

У треугольника сумма любых двух сторон должна быть больше третьей. Иначе две стороны просто «лягут» на третью и треугольника не получится.

Когда треугольник Тупоугольный?

Тупоугольный треугольник. В треугольнике сумма углов равна 180 градусам, поэтому только один угол треугольника может быть тупым, два других при этом всегда острые. Площадь тупоугольного треугольника находится так же, как площадь произвольного треугольника. Рис.

Когда можно сделать треугольник?

Треугольник существует только тогда, когда сумма любых двух его сторон больше третьей.

Как проверить существует ли треугольник по трем сторонам?

Чтобы треугольник существовал, сумма двух сторон треугольника всегда должна быть больше третей стороны. a + b > c, b + c > a, a + c > b.

Когда треугольник является Остроугольным?

Остроугольный треугольник – это треугольник, в котором все три угла острые, т. е. меньше 90°. Прямоугольный треугольник – это треугольник, в котором один угол прямой, т.

Что такое треугольник с тупым углом?

Тупоугольным треугольником будет называться любой треугольник, содержащий тупой угол. … В треугольнике сумма углов равна 180 градусам, поэтому только один угол треугольника может быть тупым, два других при этом всегда острые. Площадь тупоугольного треугольника находится так же, как площадь произвольного треугольника.

Как выглядит равносторонний треугольник?

Правильный (равносторонний, или равноугольный) треугольник — это правильный многоугольник с тремя сторонами, простейший из правильных многоугольников. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.

Что такое вырожденный треугольник?

вырожденный треугольниктреугольник, все вершины которого лежат на одной прямой. двуугольник — многоугольник с двумя углами, его стороны лежат на одной прямой, а угол равен 0°. Из него также образуются вырожденные звёздчатые многоугольники.

Как определить вид треугольника по его сторонам?

Если все три угла острые (рис. 20 ), то это остроугольный треугольник . Если один из углов прямой ( C, рис. 21), то это прямоугольный треугольник ; стороны a , b , образующие прямой угол, называются катетами ; сторона c , противоположная прямому углу, называется гипотенузой .

Как определить является ли треугольник Остроугольным?

Определить треугольник тупоугольные — один из углов более 90 градусов, прямоугольные — один из угол равен 90 градусов, остроугольные — все углы менее 90 градусов.

Как называется треугольник с тупым углом?

тупоугольным
5). Треугольник называется тупоугольным, если один из его углов тупой, то есть больше 90° (рис. 6).

Как доказать что угол в треугольнике тупой?

Тупоугольным называется треугольник, в котором

  1. один из углов больше 90 градусов
  2. есть две одинаковые стороны
  3. один из углов равняется 90 градусов
  4. есть острый угол

Как доказать что угол тупой?

Определение тупого угла Угол называется тупым, если его градусная мера лежит в пределах от $90^<\circ>$ до $180^<\circ>$ (рис. 1). $\angle \alpha$ — тупой, если $90^ <\circ>\lt \angle \alpha

Почему не существует треугольника со сторонами 1 2 4?

Верно ли, что треугольника со сторонами 1, 2 и 4 не существует? Вы знаете ответ на этот вопрос? Да, верно, такого треугольника не существует, так как у треугольника сумма любых 2 сторон больше третьей стороны.Jun 1, 2018

В каком случае треугольник не существует?

Треугольник существует только тогда, когда сумма двух его сторон больше третьей. Требуется сравнить каждую сторону с суммой двух других. Если хотя бы в одном случае сторона окажется больше либо равна сумме двух других, то треугольника с такими сторонами не существует.

Почему не существует треугольника со сторонами 124?

Решение. 1) «Треугольника со сторонами 1, 2, 4 не существует» — верно, большая сторона треугольника должна быть меньше суммы двух других.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *