Что нужно для программирования на python
Перейти к содержимому

Что нужно для программирования на python

  • автор:

Как начать работать с Python?

Python — это кроссплатформенный высокоуровневый язык программирования с динамической строгой типизацией и автоматическим управлением памятью, ориентированный на повышение производительности разработчика, читаемости кода и его качества. Работает на таких платформах, как Windows, macOS, Linux, и даже был портирован на виртуальные машины Java и .NET.

Самый простой способ запустить Python

Самый простой способ запустить Python — использовать Thonny IDE, в состав которой входит последняя версия Python. Таким образом, вам не нужно будет устанавливать Python отдельно.

Для того, чтобы запустить Python на компьютере, нужно:

Шаг №2: Запустить скачанный установщик.

Шаг №3: Выбрать File -> New . Затем сохранить файл с расширением .py (например, hello.py, example.py). Вы можете дать любое имя файлу, но оно должно заканчиваться на .py.

Шаг №4: Написать Python-код в файле и сохранить его.

Шаг №5: Для выполнения кода нужно выбрать Run -> Run current script , либо просто нажать F5.

Отдельная установка Python

Если вы не хотите использовать Thonny IDE, вы можете установить и запустить Python отдельно на своем компьютере. Для этого нужно:

Шаг №2: Запустить установщик и следовать инструкциям по установке Python. В процессе установки установите флажок возле пункта «Add Python to environment variables» . Это добавит Python к переменным окружения (или «переменным среды»), благодаря чему вы сможете запускать Python прямо с командной строки.

Также вы можете выбрать путь, где установить Python.

После завершения процесса установки вы сможете запустить Python.

Запуск Python в командной строке

После установки, напечатав python в обычной командной строке вы сможете включить Python-интерпретатор. После этого можно будет напрямую ввести любой Python-код и нажать Enter для его выполнения.

Попробуйте ввести 1+1 и нажать Enter. В результате получим 2 . Таким образом мы с вами обнаружили альтернативный калькулятор ��

Чтобы выйти из режима Python-интерпретатора, введите quit() и нажмите Enter.

Запуск Python в IDE

Можно использовать любую программу редактирования текста для написания Python-скриптов. Главное сохранить получившийся текстовый файл с расширением .py. Но использование IDE может сделать жизнь и работу намного проще.

IDE — это часть программного обеспечения, которое предоставляет программисту такой полезный функционал, как подсказки по коду, подсветка и проверка синтаксиса, файловые менеджеры и многое другое для разработки приложений. Кстати, при установке Python, также устанавливается IDE с именем IDLE. Вы можете использовать её для запуска Python на вашем компьютере. Это неплохая IDE для новичков.

При открытии IDLE появляется интерактивная оболочка Python Shell:

Теперь вы можете создать новый файл и сохранить его с расширением .py (например, hello.py).

Затем напишите Python-код и сохраните файл. Для запуска программы следует выбрать Run -> Run Module , либо просто нажмите F5.

Наша первая программа на Python

Теперь, когда Python запущен и работает, мы можем приступить к написанию программ.

Чтобы не нарушать традиции, нашей первой программой на Python будет «Hello, World», которая просто выведет этот текст на экран. Именно эту программу часто используют для ознакомления новичков с новым языком программирования.

Введите следующий код в любом текстовом редакторе или IDE и сохраните его как hello_world.py.

Затем запустите файл. Вы получите следующий результат:

Круто! Вы только что написали свою первую программу на Python. Как видите, это была довольно простая задача. В этом и кроется основная прелесть языка программирования Python.

Введение в Python

В данной статье мы затронем основы Python. Мы все ближе и ближе к цели, в общем, скоро приступим к работе с основными библиотеками для Data Science и будем использовать TensorFlow (для написания и развертывания нейросетей, тобишь Deep Learning).

Установка

Python можно скачать с python.org. Однако если он еще не установлен, то вместо
него рекомендую дистрибутивный пакет Anaconda, который уже включает в себя большинство библиотек, необходимых для работы в области науки о данных.

Если вы не используете дистрибутив Anaconda, то не забудьте установить менеджер пакетов pip, позволяющий легко устанавливать сторонние пакеты, поскольку некоторые из них нам понадобятся. Стоит также установить намного более удобную для работы интерактивную оболочку IPython. Следует учитывать, что дистрибутив Anaconda идет вместе с pip и IPython.

Пробельные символы

Во многих языках программирования для разграничения блоков кода используются
фигурные скобки. В Python используются отступы:

Это делает код легко читаемым, но в то же время заставляет следить за форматированием. Пробел внутри круглых и квадратных скобок игнорируется, что облегчает написание многословных выражений:

и легко читаемого кода:

Для продолжения оператора на следующей строке используется обратная косая черта, впрочем, такая запись будет применяться редко:

В следствие форматирования кода пробельными символами возникают трудности при копировании и вставке кода в оболочку Python. Например, попытка скопировать следующий код:

в стандартную оболочку Python вызовет ошибку:

потому что для интерпретатора пустая строка свидетельствует об окончании блока кода с циклом for.

Оболочка IPython располагает «волшебной» функцией %paste, которая правильно вставляет все то, что находится в буфере обмена, включая пробельные символы.

Модули (Импортирование библиотек)

Некоторые библиотеки среды программирования на основе Python не загружаются по умолчанию. Для того чтобы эти инструменты можно было использовать, необходимо импортировать модули, которые их содержат.

Один из подходов заключается в том, чтобы просто импортировать сам модуль:

Здесь re — это название модуля, содержащего функции и константы для’ работы с регулярными выражениями. Импортировав таким способом весь модуль, можно обращаться к функциям, предваряя их префиксом re.

Если в коде переменная с именем re уже есть, то можно воспользоваться псевдонимом модуля:

Псевдоним используют также в тех случаях, когда импортируемый модуль имеет громоздкое имя или когда в коде происходит частое обращение к модулю.

Например, при визуализации данных на основе модуля matplotlib для него обычно
используют следующий стандартный псевдоним:

Если из модуля нужно получить несколько конкретных значений, то их можно импортировать в явном виде и использовать без ограничений:

Функции

Функция — это правило, принимающее ноль или несколько входящих аргументов и возвращающее соответствующий результат. В Python функции обычно определяются при помощи оператора def:

Функции в Python рассматриваются как объекты первого класса. Это означает, что их можно присваивать переменным и передавать в другие функции так же, как любые другие аргументы:

Кроме того, можно легко создавать короткие анонимные функции или лямбда выражения:

Лямбда-выражения можно присваивать переменным. Однако рекомендуют пользоваться оператором def:

Параметрам функции, помимо этого, можно передавать аргументы по умолчанию, которые следует указывать только тогда, когда ожидается значение, отличающееся от значения по умолчанию:

Иногда целесообразно указывать аргументы по имени:

В дальнейшем функции будут использоваться очень часто.

Строки

Символьные строки (или последовательности символов) с обеих сторон ограничиваются одинарными или двойными кавычками (они должны совпадать):

Обратная косая черта используется для кодирования специальных символов. Например:

Если требуется непосредственно сама обратная косая черта, которая встречается
в именах каталогов в операционной системе Windows, то при помощи r ‘»‘ можно создать неформатированную строку:

Многострочные блоки текста создаются при помощи тройных одинарных (или
двойных) кавычек:

Исключения

Когда что-то идет не так, Python вызывает исключение. Необработанные исключения приводят к непредвиденной остановке программы. Исключения обрабатываются при помощи операторов try и except:

Хотя во многих языках программирования использование исключений считается плохим стилем программирования, в Python нет ничего страшного, если он используется с целью сделать код чище, и мы будем иногда поступать именно так.

Списки

Наверное, наиважнейшей структурой данных в Python является список. Это просто упорядоченная совокупность (или коллекция), похожая на массив в других языках программирования, но с дополнительными функциональными возможностями.

Устанавливать значение и получать доступ к n-му элементу списка можно при помощи квадратных скобок:

Помимо этого, квадратные скобки применяются для «нарезки» списков:

В Python имеется оператор ln, который проверяет принадлежность элемента списку:

Проверка заключается в поочередном просмотре всех элементов, поэтому пользоваться им стоит только тогда, когда точно известно, что список небольшой или неважно, сколько времени уйдет на проверку.

Списки легко сцеплять друг с другом:

Если нужно оставить список х без изменений, то можно воспользоваться сложением списков:

Обычно к спискам добавляют по одному элементу за одну операцию:

Нередко бывает удобно распаковать список, если известно, сколько элементов в нем содержится:

Если с обеих сторон выражения число элементов не одинаково, то будет выдано сообщение об ошибке ValueError.

Для отбрасываемого значения обычно используется символ подчеркивания:

Кортежи

Кортежи — это неизменяемые (или иммутабельные) двоюродные братья списков.

Практически все, что можно делать со списком, не внося в него изменения, можно делать и с кортежем. Вместо квадратных скобок кортеж оформляют круглымискобками, или вообще обходятся без них:

Кортежи обеспечивают удобный способ для возвращения из функций нескольких значений:

Кортежи (и списки) также используются во множественном присваивании:

Словари


Словарь или ассоциативный список — это еще одна основная структура данных.

В нем значения связаны с ключами, что позволяет быстро извлекать значение, соответствующее конкретному ключу:

Доступ к значению по ключу можно получить при помощи квадратных скобок:

При попытке запросить значение, которое в словаре отсутствует, будет выдано сообщение об ошибке KeyError:

Проверить наличие ключа можно при помощи оператора in:

Словари имеют метод get(), который при поиске отсутствующего ключа вместо вызова исключения возвращает значение по умолчанию:

Присваивание значения по ключу выполняется при помощи тех же квадратных скобок:

Словари часто используются в качестве простого способа представить структурные
данные:

Помимо поиска отдельных ключей можно обратиться ко всем сразу:

Ключи должны быть неизменяемыми; в частности, в качестве ключей нельзя использовать списки. Если нужен составной ключ, то лучше воспользоваться кортежем или же найти способ, как преобразовать ключ в строку.

Словарь defaultdict

Пусть в документе необходимо подсчитать слова. Очевидным решением задачи является создание словаря, в котором ключи — это слова, а значения — частотности слов (или количества вхождений слов в текст). Во время проверки слов в случае, если текущее слово уже есть в словаре, то его частотность увеличивается, а если отсутствует, то оно добавляется в словарь:

Кроме этого, можно воспользоваться nриемом под названием «лучше просить прощения, чем разрешения» и перехватывать ошибку при попытке обратиться к отсутствующему ключу:

https://amdy.su/wp-admin/options-general.php?page=ad-inserter.php#tab-8

Третий прием — использовать метод get(), который изящно выходит из ситуации с отсутствующими ключами:

Все перечисленные приемы немного громоздкие, и по этой причине целесообразно использовать словарь defaultdict (который еще называют словарем со: значением по умолчанию). Он похож на обычный словарь за исключением одной особенности — при попытке обратиться к ключу, которого в нем нет, он сперва добавляет для него значение, используя функцию без аргументов, которая предоставляется при его создании. Чтобы воспользоваться словарями defaultdict, их необходимо импортировать из модуля collections:

Кроме того, использование словарей defaultdict имеет практическую пользу во время работы со списками, словарями и даже с пользовательскими функциями:

Эти возможности понадобятся, когда словари будут использоваться для «сбора»
результатов по некоторому ключу и когда необходимо избежать повторяющихся
проверок на присутствие ключа в словаре.

Словарь Counter


Подкласс словарей counter трансформирует последовательность значений в похожий на словарь defaultdict(int) объект, где ключам поставлены в соответствие частотности или, выражаясь более точно, ключи отображаются (map) в частотности.

Он в основном будет применяться при создании гистограмм:

Его функционал позволяет достаточно легко решить задачу подсчета частотностей слов:

Словарь counter располагает методом most_common( ), который нередко бывает полезен:

Множества


Структура данных set или множество представляет собой совокупность неупорядоченных элементов без повторов:

Множества будут использоваться по двум причинам. Во-первых, операция in на множествах очень быстрая. Если необходимо проверить большую совокупность элементов на принадлежность некоторой последовательности, то структура данных set подходит для этого лучше, чем список:

Вторая причина — получение уникальных элементов в наборе данных:

Множества будут применяться намного реже словарей и списков.

Управляющие конструкции

Как и в большинстве других языков программирования, действия можно выполнять по условию, применяя оператор if:

Кроме того, можно воспользоваться однострочным трехместным оператором if-then-else, который будет иногда использоваться в дальнейшем:

В Python имеется цикл whlle:

Однако чаще будет использоваться цикл for совместно с оператором in:

Если требуется более сложная логика управления циклом, то можно воспользоваться операторами

В результате будет напечатано 0, 1, 2 и 4.

Истинность


Булевы переменные в Python работают так же, как и в большинстве других языков программирования лишь с одним исключением — они пишутся с заглавной буквы:

Для обозначения несуществующего значения применяется специальный объект None, который соответствует значению null в других языках:

В Python может использоваться любое значение там, где ожидается логический тип Boolean. Все следующие элементы имеют логическое значение False:

  • False; .
  • None;
  • set() (множество):
  • [] (пустой список);
  • <> (пустой словарь);

Вот более простой способ сделать то же самое:

поскольку логический оператор and возвращает второе значение, в случае если первое истинное, и первое значение, в случае если оно ложное. Аналогичным образом, если х в следующем ниже выражении является либо числом, либо, возможно, None, то результат так или иначе будет числом:

Встроенная функция all языка Python берет список и возвращает True только тогда, когда каждый элемент списка истинен, а встроенная функция any возвращает тrue, когда истинен хотя бы один элемент:

С чего начать изучение Python и как написать на нем первый код

С чего начать изучение Python и как написать на нем первый код главное изображение

Python — самый популярный язык программирования по данным индекса TIOBE на октябрь 2022 года. Востребованность Python можно объяснить тем, что его применяют во многих сферах: веб-разработка (чаще всего серверная часть), машинное обучение и анализ больших данных.

Также на Python создают:

  • Видеоигры
  • Десктопные приложения
  • 3D-графику
  • Программ для обработки изображений, видео и аудио.

В сфере мобильной разработки язык Python используют очень редко.

Python — высокоуровневый язык с динамической типизацией. Это значит, что код на нем прост для чтения и понимания, а разработка быстрая, так как Python сам классифицирует вводимые данные.

Посмотрите, как можно вывести на экран фразу «Hello, World!» в одну строчку с помощью одной понятной команды:

И как это можно сделать с помощью языка Java:

Python также известен своей философией — правилами, которые разработчики стараются соблюдать при написании кода. Они сформулированы в списке из 19 пунктов под названием «The Zen of Python». Вот несколько правил из этого списка:

  • Явное лучше, чем неявное
  • Простое лучше, чем сложное
  • Читаемость имеет значение.

У Python есть более сотни библиотек кода — наборов инструментов для решения программистских задач. Также есть много фреймворков: возможно, вы что-то слышали о Django, Pyramid или Flask. Каждый из этих инструментов можно освоить, чтобы выйти на новый уровень программирования на Python.

Python применяют для создания и поддержания своих продуктов такие компании, как Google, Yandex, Spotify, Microsoft, Pinterest, Quora, Intel и другие.

Станьте востребованным Python-разработчиком На Хекслете есть обучение по профессии Python-разработчика. Пройдите его, чтобы изучить Python и фреймворк Django, разобраться в алгоритмах и структурах данных, а также получить поддержку от менторов и единомышленников.

С чего начать изучение языка Python

Определитесь с целью

Изучать любой язык программирования с нуля легче, когда вы понимаете, где применять полученные знания. От вашего выбора также зависит стек технологий, который вы будете использовать в будущем.

Разберитесь в синтаксисе языка

Синтаксис — это набор правил, по которым разработчики пишут код на любом языке программирования. Основа, без которой невозможно программировать.

Многие хотят начинать изучение программирования с Python, потому что у этого языка достаточно простой синтаксис. Код на нем можно понять без особых знаний за счет лаконичности языковых конструкций.

Вот примерный список тем, которые нужно изучить и понять перед тем, как начать кодить на Python:

  1. Строки — как их выводить, извлекать из них символы
  2. Переменные и типы — для чего они нужны, как облегчают разработку
  3. Операторы — какие они бывают в Python и как работают
  4. Условия — что такое условные конструкции и как их задавать
  5. Циклы — для чего нужны и как использовать
  6. Структуры данных — для чего используют, сколько всего структур и какие они бывают
  7. Функции — в чем особенность, как их вызывать и где искать документацию по ним
  8. Классы и объекты — что это такое и как они обозначаются.

Изучить основы языка вам поможет бесплатный курс «Python для начинающих» на проекте Codebasics. Обучение там начинается с азов, информация структурирована и подается от простого к сложному.

Читайте также: Программирование на Python: особенности обучения, перспективы, ситуация на рынке труда

Ознакомьтесь с документацией

Документация дает представление о работе языка и показывает примеры его использования. Это как огромная библиотека или справочная, в которую разработчик может прийти за нужным документом или ответом в спорных ситуациях. Документацию Python можно посмотреть на официальном сайте.

Как начать программировать на Python

Установите среду разработки

После того, как вы изучите синтаксис, попробуйте написать первый код. Это можно сделать в интегрированной среде разработки — IDE, которая включает в себя редактор кода, инструменты для его выполнения и отладки, а также систему контроля версий.

Среда разработки помогает разработчику ориентироваться в коде и искать в нем ошибки. Самые популярные IDE для Python: Python IDLE, PyCharm, Spyder, Thonny.

Еще можно установить редактор кода — это более легковесная программа, аналог текстовых редакторов. Она сохраняет проекты в правильном расширении, автоматически проверяет отступы в коде и подсвечивает синтаксис. Самые популярные редакторы кода для Python: Visual Studio Code, Sublime Text, Vim.

Также существует онлайн-IDE, с помощью которой можно писать код на Python прямо в браузере. Replit подойдет для первого знакомства с Python и создания небольших проектов.

Решайте задачи

Существует много разных сайтов, на которых питонисты выкладывают и решают задачи по Python. Это, например:

Платформа Kaggle подойдет для тех, кто выбрал для дальнейшего развития сферу машинного обучения. На ней проходят групповые соревнования, где организаторы дают разные задачи по Data Science. Участники решают задачи с помощью языка Python. Лучшие решения можно будет положить в портфолио.

Участвуйте в играх

Изучать Python по играм не менее эффективно, чем штудировать теорию курсов и учебников. На игровых турнирах можно прокачиваться в написании кода и даже знакомиться с единомышленниками.

В какие игры можно поиграть:

    — пожалуй, самая популярная игра по Python. В ней нужно помогать обезьянке собирать бананы с помощью цепочки команд. — игра учит базовым навыкам программирования и написанию кода. В ней нужно захватывать земли и уничтожать врагов. — это платформа, на которой проходят игры и турниры для разработчиков. Они развивают алгоритмическое мышление и дают полезные связи с разработчиками. Хекслет проводит соревнования разработчиков разных уровней на Codebattle каждый месяц — участвуйте, чтобы приобрести новый опыт и разнообразить свое обучение.

Сколько времени нужно, чтобы выучить Python

Судя по опыту многих разработчиков, базовые знания по Python можно получить чуть меньше, чем за месяц, если заниматься до пяти часов в неделю.

Если вы хотите стать Python-разработчиком, то готовьтесь уделять учебе от десяти часов в неделю. Занимаясь такое количество времени, вы сможете освоить Python на уровне джуна примерно в течение года.

Основы языка можно выучить самостоятельно с помощью книг, видеолекций и онлайн-курсов. Но на более поздних этапах обучения рекомендуем вам обращаться по всем вопросам к опытным разработчикам или менторам.

Читайте также: Как я 10 лет проектировал мосты, а в 33 года стал Python-разработчиком в банке

Полезные материалы для изучения Python

Есть много хороших книг по изучению Python. Будет здорово, если вы прочитаете некоторые из них:

  • Пол Бэрри «Изучаем программирование на Python»
  • Марк Лутц «Изучаем Python»
  • Эрик Мэтиз. Изучаем Python. Программирование игр, визуализация данных, веб-приложения».

Также у Хекслета есть свой список рекомендованной литературы. Ознакомьтесь с этими книгами — они полезны для программистов любых направлений.

На YouTube-канале Хекслета есть рубрика «Публичные собеседования», в которой наши студенты проходят учебные интервью у специалистов разных компаний. Посмотрите видео из этой рубрики, чтобы иметь понимание о том, как проходят собеседования и какие знания нужны разработчикам, чтобы успешно их проходить.

Если в процессе обучения вы почувствуете, что вам не хватает поддержки единомышленников и более опытных разработчиков, присоединяйтесь к Хекслет Комьюнити. Там вы сможете обсуждать трудные моменты в учебе, получать помощь и поддержку.

Станьте востребованным Python-разработчиком На Хекслете есть обучение по профессии Python-разработчика. Пройдите его, чтобы изучить Python и фреймворк Django, разобраться в алгоритмах и структурах данных, а также получить поддержку от менторов и единомышленников.

Изучение Python: от нуля до мастера

NOP

Первым делом спросим себя, что такое Python? Создатель языка, Гвидо ван Россум, описывает его следующим образом:

“Язык программирования высокого уровня, главная идея которого — это простая читабельность и синтаксис, который позволяет программистам выражать концепцию программы парой строк кода”

Лично для меня, первой причиной изучать Python было то, что это очень красивый язык программирования, выражать мысли в котором просто и естественно.

Следующей причиной было то, что Python мультизадачный. Мы можем его использовать для анализирования данных, разработки сайтов, машинного обучения. Quora, Pinterest и Spotify используют именно Python для своего back-end’а. Хорошая мотивация, чтобы узнать чуть больше об этом.

Основы

1. Переменные

Вы можете думать о переменных, как о словах, что держат в себе какое-то значение. Очень просто.

В Python нет ничего проще, чем определить переменную и присвоить ей какое-то значение. Представьте, что мы ходим сохранить число 1 в переменной, которую назовём “one”. Это будет выглядеть следующим образом

Что может быть проще? И при этом вы только что присвоили значение 1 для переменной “one”.

И таким образом вы можете присвоить любое значение любой переменной. И как видно в примере кода повыше, переменная “two” хранит числовое значение 2, а переменная “some_number” хранит значение 10,000.

Помимо числовых значений, мы также можем использовать логические (true/false, в переводе истинно/ложно), строки, десятичные числа и много других типов.

2. Контролирование потока: условные состояния

Ключевое слово “if” используется для ситуаций, когда нам нужно выполнить разные действия при положительных или отрицательных условиях. При значении “истинно” будет выполняться описанный после слова “if” блок, например:

2 больше, чем 1, поэтому выполняется “print”-команда.

Блок “else” выполнится при условии, если условие “if” ложно.

Так как 1 не больше 2, то выполняется в блоке “else”.

Также можно использовать “elif” условие:

3. Циклы / итерации

В Python, можно создавать циклы различными способами. Мы расскажем о двух: while и for.

Цикл While: до тех пор, пока условие истинно, код внутри цикла будет выполняться. Таким образом, следующий код напишет числа от 1 до 10.

Циклу while нужно “условие повтора”. Если оно остаётся истинным, итерации продолжаются. В приведённом примере, когда значение num становится 11, условие цикла становится ложным.

Ещё один небольшой пример, чтобы лучше понять цикл while:

Условие цикла(loop condition) установлено в True, поэтому цикл будет выполняться до тех пор, пока мы не переключим его в значение False.

Цикл for: в цилке for мы назначаем переменную “num” для самого цикла, который в свою очередь будет увеличивать значение этой переменной. Следующий код напишет числа от 1 до 10 точно так же, как и цикл while:

Видите? Очень просто. Цикл начинается с 1 и продолжается до 11 элемента.

Списки: коллекция, массив, структура данных

Представьте что вы хотите сохранить значение 1 в переменной. или может теперь вы хотите сохранить 2. А ещё 3, 4, 5…

Есть ли иной способ хранить все числа, что нам нужны, не имея при этом, не создавая при этом миллионы переменных? Как оказывается, есть иной способ хранить их всех.

Список(массив) это коллекция, которая может быть использована для хранения нескольких значений(в нашем случае чисел). Используется он следующим образом:

Это действительно просто. Мы создали список и сохранили его в my_integers.

Но затем мы спросим себя: “А как нам получить нужное значение из списка?”.

Хороший вопрос. В списках есть концепция, которая зовётся номером(индексом). Номером первого элемента в списке является 0, следующий получает 1 и так далее.

Чтобы донести это проще, мы можем представить список, у которого каждый элемент подписан своим номером. Как на следующей картинке:

Используя синтаксис Python не сложно понять и следующее:

Представьте, что мы больше не хотим хранить числа. Вместо этого мы хотим составить список имён наших знакомых. Мой выглядел бы следующим образом:

Это работает точно так же, как и с числами. Неплохо.

Только что мы выучили, как работают индексы в списках. Но мне всё ещё нужно показать вам, как добавить новый элемент в список.

Самая простая функция, которую можно использовать для этого — зовётся append. Работает она следующим образом:

Функция append донельзя проста. Вам всего лишь нужно использовать новый элемент(в примере выше это “The Effective Engineer”) как значение это функции.

Ну что же, достаточно о списках. Перейдём к следующей структуре данных.

Словарь: структура данных в виде ключ-значение

Теперь мы знаем, что списки пронумерованы числовыми значениями. Но что, если мы не хотим использовать числа для идентификации элемента? Некоторые виды структур данных могут использовать числа, строки, или другие виды идентификации.

Одним из таких типов является словарь. Словарь это коллекция пар ключ-значение. Вот так это выглядит:

Ключ указывает на значение. Чтобы получить доступ к какому-либо значению — нам нужно обратиться к его ключу. Делается это следующим образом:

Я создал словарь о себе. Моё имя, никнейм и национальность. Эти атрибуты ключи в словаре.

Похожим образом на то, как мы получаем элемент из списка по его номеру, точно так же мы получаем значения словарей по их ключам.

В примере я написал предложение о себе используя значения, которые хранятся в словаре. Довольно просто, не правда ли?

Ещё одной хорошей особенностью словарей является то, что мы можем использовать что угодно в качестве значения. В том словаре, что я создал, я хочу добавить новый ключ “age”(возраст) и числом мой реальный возраст в качестве значения:

Здесь у нас пара из ключа(age) и значения(24). При этом ключ это строка, а значение это число.

Точно также как со списками, давайте научимся добавлять новый элемент в словарь. Ключ указывающий на значение — главная особенность словаря. И это же одна из особенностей при добавлении нового элемента в словарь:

Нам просто нужно дописать значение для существующего ключа в словаре. Ничего сложного, не так ли?

Итерации: циклы для структур данных

Как описывалось выше — итерации в списках довольно просты. Обычно Python-разработчики используют цикл for. Давайте посмотрим как это выглядит:

Таким образом, за каждую книгу на книжной полке(bookshelf) мы вызываем функцию print. Достаточно просто и интуитивно. Это Python.

Для хэш-структуры данных мы используем тот же цикл for, но в качестве счётчика выступает key:

Это пример того как мы используем этот цикл. За каждый ключ в словаре, мы используем print для вывода ключа и его значения.

Также есть другой способ сделать это используя функцию iteritems.

Мы назвали наши параметры как key и value, но в этом нет необходимости. Мы можем назвать их как угодно. Давайте проверим это:

В данном примере мы использовали attribute, как параметр для ключей словаря. Как видим, всё работает корректно. Отлично!

Классы и объекты

Немного теории:

Объекты это представление предметов из реальной жизни, например машин, собак, велосипедов. У объектов есть две основных характеристики: данные и поведение.

У машин есть данные, например количество колёс или сидячих мест. Также у них есть поведение: они могут разгоняться, останавливаться, показывать оставшееся количество топлива и другое.

В объектно-ориентированном программировании мы идентифицируем данные как атрибуты, а поведение как методы. Ещё раз:

Данные → Атрибуты; Поведение → Методы

Класс это как чертёж, из которого создаются уникальные объекты. В реальном мире есть множество объектов с похожими характеристиками. Например, машины. Все они имеют какую-то марку или модель(точно так же как и двигатель, колёса, двери и так далее). Каждая машина была построена из похожего набора чертежей и деталей.

Активировать объектно-ориентированный режим Python

Python, как объектно-ориентированный язык программирования, имеет следующие концепции: классы и объекты.

Класс — это чертёж, модель для его объектов.

Ещё раз, класс — это просто модель, или способ для определения атрибутов и поведения(о которых мы говорили в теории выше). Например, класс машины будет иметь свои собственные атрибуты, которые определяют какие объекты являются машинами. Количество колёс, тип топлива, количество сидячих мест и максимальная скорость — всё это является атрибутами машин.

Держа это в уме, давайте посмотрим на синтаксис Python для классов:

Мы определяем классы class-блоком и на этом всё. Легко, не так ли?

Объекты это экземпляры классов. Мы создаём экземпляр тогда, когда даём классу имя.

Здесь car это объект(экземпляр) класса Vehicle.

Помните, что наш класс машин имеет следующие атрибуты: количество колёс, тип топлива, количество сидячих мест и максимальная скорость. Мы задаём все атрибуты когда создаём объект машины. В коде ниже, мы описываем наш класс таким образом, чтобы он принимал данные в тот момент, когда его инициализируют:

Мы используем метод init. Мы называем этот конструктор-методом. Таким образом, когда мы создаём объект машины, мы можем ещё и определить его атрибуты. Представьте, что нам нравится модель Tesla S и мы хотим создать её как наш объект. У неё есть четыре колеса, она работает на электрической энергии, есть пять сидячих мест и максимальная скорость составляет 250 км/ч. Давайте создадим такой объект:

Четыре колеса + электрический “вид топлива” + пять сидений + 250 км/ч как максимальная скорость.

Все атрибуты заданы. Но как нам теперь получить доступ к значениям этих атрибутов? Мы посылаем объекту сообщению с запросом атрибутов. Мы называем это метод. Это поведение объекта. Давайте воплотим эту идею:

Это реализация двух методов: number_of_wheels и set_number_of_wheels. Мы называем их получатель и установщик. Потому что получатель принимает значение атрибута, а установщик задаёт ему новое значение.

В Python мы можем реализовать это используя @property для описания получателя и установщика. Посмотрим на это в коде:

Далее мы можем использовать методы как атрибуты:

Это немного отличается от описания методов. Эти методы работают как атрибуты. Например, когда мы задаём количество колёс, то не применяем два как параметр, а устанавливаем значение двойки для number_of_wheels. Это один из способ написать получать и установщик в Python.

Ещё мы можем использовать методы для других вещей, например создать метод “make_noise”(пошуметь).

Когда мы вызовем этот метод, он просто вернётся строку “VRRRRUUUUM”.

Инкапсуляция: сокрытие информации

Инкапсуляция — это механизм, который ограничивает свободный доступ к данным и методам объекта. Но в то же время, это упрощает доступ к данным(методам объекта).

“Инкапсуляция может использоваться для сокрытия данных и функций. Под определением инкапсуляции имеется ввиду то, что внутреннее представление объекта сокрыто от просмотра вне определения объекта.” — Википедия

Вся внутренняя реализация объекта недоступна извне. Только сам объект может взаимодействовать со своими внутренними данными.

Для начала нам нужно понять как работают публичные и не-публичные переменные и методы.

Публичные экземпляры данных

Для Python-класса мы можем инициализировать публичный экземпляр переменной внутри нашего конструктор-метода. Давайте посмотрим:

Здесь мы применяем значение first_name как аргумент для публичного экземпляра переменной.

Здесь нам не нужно применять first_name как аргумент, а все экземпляры объектов будут иметь заранее прописанный атрибут класса. В нашем случае first_name будет заполнено строкой “ТК.

Круто. Теперь мы узнали как можно использовать публичные экземпляры переменных и атрибуты класса. Ещё одна интересная особенность публичных данных в том, что мы можем управлять значениями переменных. Что я имею в виду под этим? Наш объект может управлять значением переменной: получать и устанавливать значения переменной.

Помня о классе person зададим значение для переменной first_name

Вот и всё. Мы просто задали другое значение(kaio) экземпляру переменной first_name и оно обновилось. И всё на этом. Поскольку это публичная переменная, то мы можем делать это так.

Не-публичные экземпляры данных

Мы не используем термин “приватный”, поскольку в Python нет действительно приватных атрибутов(если только не задаваться тяжёлой целью создать их). — PEP 8

Точно так же, как с публичными экземплярами переменных, мы можем объявить и не-публичные экземпляры. Оба внутри конструктор-метода или внутри класса. Синтаксис несколько отличается: не-публичные экземпляры переменных должны начинаться с нижнего подчёркивания(“_”) перед именем переменной.

“‘Приватный’ экземпляр данных, доступ к которому открыт только изнутри, не существует в Python. Тем не менее, есть условность, которая выполняется в большей части Python-кода: имена с префиксом “_”(например, “_spam”) должны обрабатываться как не-публичные части API(будь то функция, метод или какие-то данные)” — Python Software Foundation

Увидели переменную email? Вот так мы описываем не-публичную переменную:

Мы имеем доступ и может обновить это. Не-публичные переменные это условность, при которой эти переменные обрабатываются как не-публичная часть API.

Таким образом мы создаём метод, который позволяет нам вносить изменения внутри определения класса. Давайте реализуем два метода(email и update_email), чтобы понять это:

Теперь мы имеем доступ и можем обновить значения не-публичных переменных используя эти методы. Посмотрим:

  1. Мы объявили новый объект, в котором first_name заполнено строкой “ТК” и email заполнено строкой “tk@mail.com”
  2. Выводим email получая доступ к не-публичной переменной через метод
  3. Пробуем задать новый email извне нашего класса
  4. Нам нужно обращаться в не-публичной переменной как к не-публичной части API
  5. Обновляем нашу не-публичную переменную с нашим методом экземпляра
  6. Успех! Мы можем обновить это внутри нашего метода с помощью метода-помощника

Публичные методы

Публичные методы мы тоже можем использовать вне класса:

Давайте протестируем это:

Прекрасно. Мы можем использовать это без каких-либо проблем.

Не-публичные методы

Но не-публичные методы мы не можем использовать так просто. Давайте реализуем тот же класс Person, но теперь метод show_age станет не-публичным с нижним подчёркиванием.

А теперь попробуем вызвать этот не-публичный метод с помощью нашего объекта:

У нас есть доступ и мы можем обновить это. Не-публичные методы это просто условность, при которых они обрабатываются как не-публичная часть API.

Здесь пример того, как мы можем использовать это:

Здесь у нас есть не-публичный метод _get_age и публичный метод show_age. show_age может использоваться нашим объектом(вне класса), в то время как _get_age используется только внутри определения нашего класса(внутри метода show_age). Но опять же, в виду условностей.

Вывод об инкапсуляции

С помощью инкапсуляции мы можем убедиться, что наша внутренняя реализация объекта сокрыта от внешних манипуляций.

Наследование: поведение и характеристики

Разные объекты могут иметь некоторую схожесть, обладать поведением и характеристиками.

Например, я унаследовал какие-то характеристики и поведение от своего отца. Я получил его глаза и волосы в качестве своих характеристик, а его нетерпеливость и интровертность в качестве своего поведения.

В объектно-ориентированном программировании классы могут наследовать простые характеристики(данные) и поведение(методы) от других классов.

Давайте посмотрим другой пример и реализуем его в Python.

Представьте машину. Количество колёс, сидячих мест и максимальная скорость — всё это атрибуты машины. Мы можем сказать, что класс электромашины наследует эти схожие характеристики от обычного класса машины.

Наш класс машины реализует:

Один раз реализовав, мы можем использовать все созданные экземпляры переменных. Неплохо.

В Python, мы применяем класс-родитель к нашему классу-наследнику как параметр. Класс электромашины может наследоваться от класса машины.

Вот так просто. Нам не нужно реализовывать какой-либо другой метод, потому что этот класс уже имеет его(унаследовав от класса машины). Давайте докажем это:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *