Как найти угол альфа формула – Синус угла — sin(A) | Формулы и расчеты онлайн
В данной статье мы с вами разберём некоторые задачи связанные с выражениями. Задания данной группы довольно разнообразны. Если вы запомнили свойства степеней, корней и логарифмов, знаете основные формулы тригонометрии, и постоянно практикуетесь, то большинство задач для вас никакого труда не представят.
Относительную сложность могут вызывать следующие:
— преобразования буквенных иррациональных выражений
— вычисление значений тригонометрических выражений
— преобразования тригонометрических выражений
Если перечислить все группы задач, то они довольно разнообразны.
Они включают в себя: ПОКАЗАТЬ/СКРЫТЬ
Здесь мы с вами разберём задачи на вычисление значений тригонометрических выражений. Конечно, все их в одной статье разобрать невозможно. Но мы обязательно разберём и другие примеры, не пропустите!
Итак, что обязательно вы должны знать и всегда помнить? Это знаки тригонометрических функций в четвертях. ЭТО ВАЖНО.
Как осознать эту информацию и понять следствием чего она является – об этом будет отдельная статья (если вы это знаете, то прекрасно). Пока предлагаю пока просто запомнить:
Основное тригонометрическое тождество:
Формулы тангенса и котангенса:
Выполняются элементарные алгебраические преобразования:
1. Числитель и знаменатель дроби можем умножать и делить на одно и тоже число.
2. Левую и правую часть уравнения можем умножать и делить на одно и тоже число.
В представленных ниже заданиях используется основное тригонометрическое тождество и формула тангенса.
Найдите тангенс альфа, если
В этом и подобных примерах необходимо знать основное тригонометрическое тождество (его вообще нужно помнить всегда), а также формулу тангенса:
Косинус угла нам известен. Из формулы основного тригонометрического тождества мы можем найти значение синуса. Затем подставить их в формулу тангенса.
Теперь ВАЖНЫЙ момент: необходимо определить знак синуса для интервала (3Пи/2;2Пи). Это интервал от 270 до 360 градусов (четвёртая четверть). Как переводить радианы в градусы можно посмотреть здесь. Значение синуса в этой четверти отрицательное, поэтому:
Найдите tg α, если
В этом и подобных примерах необходимо знать основное тригонометрическое тождество (его вообще нужно помнить всегда), а также формулу тангенса:
Cинус угла нам известен. Из формулы основного тригонометрического тождества мы можем найти значение косинуса. Затем подставить их в формулу тангенса.
Определяем знак косинуса для интервала (Пи/2;Пи). Это интервал от 90 до 180 градусов (вторая четверть). Значение косинуса в этой четверти отрицательное (смотрите эскиз). Поэтому
Найдите 5·cos α, если синус альфа
Необходимо найти косинус угла. Из формулы основного тригонометрического тождества следует, что cos 2 x = 1– sin 2 x и
Определим знак косинуса. Угол принадлежит интервалу (3Пи/2;2Пи).
Это интервал от 270 до 360 градусов (четвёртая четверть). Значение косинуса в этой четверти положительное, поэтому:
Таким образом, 5·cos α = 5∙0,7 = 3,5
Найдите 0,1·sin α, если
Необходимо найти синус угла. Из формулы основного тригонометрического тождества следует, что sin 2 x = 1– cos 2 x и
Определим знак синуса. Угол принадлежит интервалу (0; Пи/2).
Это интервал от 0 до 90 градусов (первая четверть). Значение синуса в этой четверти положительное, поэтому:
Таким образом 0,1·sin α = 0,1∙0,3 = 0,03
Общая рекомендация для следующих данных примеров! Если требуется найти тангенс аргумента (квадрат тангенса), то осуществляем деление на косинус (квадрат косинуса). Если требуется найти котангенс аргумента (квадрат котангенса), то осуществляем деление на синус (квадрат синуса). Примеры:
65217. Найдите tg 2 α, если 3sin 2 α + 8 cos 2 α = 7
Требуется найти квадрат тангенса. Разделим обе части уравнения на cos 2 α, получим:
Далее по формуле основного тригонометрического тождества можно найти квадрат синуса и используя формулу тангенса вычислить уже его квадрат:
Преобразуем данное выражение так, чтобы в числителе и знаменателе был тангенс. Разделим числитель и знаменатель на cos α, получим:
Здесь дано значение тангенса. Необходимо сделать так, чтобы в выражении у нас был тангенс. Вынесем cosα за скобки в числителе и знаменателе (или разделим числитель и знаменатель на cosα), получим:
Подставим значение тангенса данное в условии, получим:
*Косинус у нас сократился.
65363. Найдите tg α, если
В левой части в числителе и знаменателе вынесем cosα за скобки, получим:
65423. Найдите tg α, если
Умножим обе части уравнения на 4 (2sinα+cosα+1)
26775. Найдите tg α, если
26776. Найдите tg α, если
26777. Найдите 3cos α, если
26778. Найдите 5sin α, если
26787. Найдите tg 2 α, если
26790. Найдите tg α, если
26791. Найдите tg α, если
Подведём итог, для решения подобных примеров вы:
1. Должны знать на зубок основные формулы тригонометрии.
2. Не забывать определять знак (+ или -) для тригонометрических функций в четвертях. Потерянный знак на экзамене – это ошибка и потерянный бал, будьте внимательны.
Надеюсь, что материал был для вас полезен.
С уважением, Александр Крутицких.
P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.
Определение ЭОС
Мысленно поместим результирующий вектор возбуждения желудочков внутрь треугольника Эйнтховена. Угол, образованный направлением результирующего вектора и осью I стандартного отведения, и есть искомый угол альфа.
Величину угла альфа находят по специальным таблицам или схемам, предварительно определив на электрокардиограмме алгебраическую сумму зубцов желудочкового комплекса (Q + R + S) в I и III стандартных отведениях. Найти алгебраическую сумму зубцов желудочкового комплекса достаточно просто: измеряют в миллиметрах величину каждого зубца одного желудочкового комплекса QRS, учитывая при этом, что зубцы Q и S имеют знак минус (—), поскольку находятся ниже изоэлектрической линии, а зубец К — знак плюс (+). Если какой-либо зубец на электрокардиограмме отсутствует, то его значение приравнивается к нулю (0).
Далее, сопоставляя найденную алгебраическую сумму зубцов для I и III стандартных отведений, по таблице определяют значение угла альфа. В нашем случае он равен минус 70°. Таблица определения положения электрической оси сердца (по Дьеду)
Таблица определения угла альфа
Если угол альфа находится в пределах 50—70°, говорят о нормальном положении электрической оси сердца (электрическая ось сердца не отклонена), или нормограмме. При отклонении электрической оси сердца вправо угол альфа будет определяться в пределах 70—90°. В обиходе такое положение электрической оси сердца называют правограммой.
Если угол альфа будет больше 90° (например, 97°), считают, что на данной ЭКГ имеет место блокада задней ветви левой ножки пучка Гиса. Определяя угол альфа в пределах 50—0° говорят об отклонении электрической оси сердца влево, или о левограмме. Изменение угла альфа в пределах 0 — минус 30° свидетельствует о резком отклонении электрической оси сердца влево или, иными словами, о резкой левограмме. И наконец, если значение у г л а альфа будет меньше минус 30° (например, минус 45°) — говорят о блокаде передней ветви левой ножки пучка Гиса.
Пределы отклонения электрической оси сердца
Определение отклонения электрической оси сердца по углу альфа с использованием таблиц и схем производят в основном врачи кабинетов функциональной диагностики, где соответствующие таблицы и схемы всегда под рукой. Однако определить отклонение электрической оси сердца можно и без необходимых таблиц. В этом случае отклонение электрической оси находят по анализу зубцов R и S в I и III стандартных отведениях. При этом понятие алгебраической суммы зубцов желудочкового комплекса комплекса QRS, заменяют визуально понятием «определяющий зубец» сопоставляя по абсолютной величине зубцы R и S . Говорят о «желудочковом комплексе R-типа», подразумевая, что в данном желудочковом комплексе более высоким является зубец К. Напротив, в «желудочковом комплексе S-типа» определяющим зубцом комплекса QRS является зубец S.
Сопоставление зубцов К и 3 комплекса QRS
Если на электрокардиограмме в I стандартном отведении желудочковый комплекс представлен R-типом, а комплекс QRS в III стандартном отведении имеет форму S-типа, то в данном случае электрическая ось сердца отклонена влево (левограмма).
Схематично это условие записывается как RI-SIII.
Визуальное определение электрической оси сердца
. Левограмма Напротив, если в I стандартном отведении мы имеем S-тип желудочкового комплекса, а в III отведении R-тип комплекса QRS, то электрическая ось сердца отклонена вправо (правограмма). Упрощенно это условие записывается как SI-RIII.
Визуальное определение электрической оси сердца
. Правограмма Результирующий вектор возбуждения желудочков расположен в норме во фронтальной плоскости так, что его направление совпадает с направлением оси II стандартного отведения.
Нормальное положение электрической оси сердца
(нормограмма) На рисунке видно, что амплитуда зубца R во II стандартном отведении наибольшая. В свою очередь зубец К в I стандартном отведении превосходит зубец RIII. При таком условии соотношения зубцов R в различных стандартных отведениях мы имеем нормальное положение электрической оси сердца (электрическая ось сердца не отклонена). Краткая запись этого условия — RII>RI>RIII.
III.3. Угол альфа
III.3. Угол α
Мысленно поместим результирующий вектор возбуждения желудочков внутрь треугольника Эйнтховена. Угол, образованный направлением результирующего вектора и осью I стандартного отведения, и есть искомый угол α.
Величину угла α находят по специальным таблицам или схемам, предварительно определив на электрокардиограмме алгебраическую сумму зубцов желудочкового комплекса (Q+R+S) в T и III стандартных отведениях.
Найти алгебраическую сумму зубцов желудочкового комплекса достаточно просто: измеряют в миллиметрах величину каждого зубца одного желудочкового комплекса QRS, учитывая при этом, что зубцы Q и S имеют знак минус (-), поскольку находятся ниже изоэлектрической линии, а зубец R – знак плюс (+). Если какой-либо зубец на электрокардиограмме отсутствует, то его значение приравнивается к нулю (0).
Далее, сопоставляя найденную алгебраическую сумму зубцов для I и III стандартных отведений, по таблице определяют значение угла α. В нашем случае он равен мину с 70°.
Если угол α находится в пределах 50-70°, говорят о нормальном положении электрической оси сердца (электрическая ось сердца не отклонена), или нормограмме.
При отклонении электрической ось сердца вправо угол α будет определяться в пределах 70-90°. В обиходе такое положение электрической оси сердца называют правограммой.
Если угол α будет больше 90° (например, 97°), считают, что на данной ЭКГ имеет место блокада задней ветви левой ножки пучка Гиса.
Определяя угол α в пределах 50-0°, говорят об отклонении электрической оси сердца влево, или о левограмме.
Изменение угла α в пределах 0 – минус 30° свидетельствует о резком отклонении электрической оси сердца влево или, иными словами, о резкой левограмме.
И, наконец, если значение угла α будет меньше минус 30° (например, минус 45°) – говорят о блокаде передней ветви левой ножки пучка Гиса.
Определение отклонения электрической оси сердца по углу α с использованием таблиц и схем производят в основном врачи кабинетов функциональной диагностики, где соответствующие таблицы и схемы всегда под рукой.
Однако определить отклонение электрической оси сердца можно и без необходимых таблиц.
Тригонометрия с нуля в 9 классе
Тригонометрия начинается в 9-м классе и это одна из самых нелюбимых тем у школьников. Не потому, что она сложная, а потому, что это что-то новое и очень необычное. Но в ОГЭ она если и встречается, то в первой части, а значит, ничего сложного там не должно быть.
Возникает интересный вопрос: как может пригодиться тригонометрия в реальной жизни? Оказывается, ее применение очень обширно: в астрономии и навигации при определении углов и направлений, в географии, в волновой физике (радио, радары, свет, рентген) и т.д. Конечно многие, кто заканчивает школу, никогда больше не столкнутся с тригонометрией, но общие знания все равно должны быть у каждого, чтобы понимать, как устроен окружающий нас мир.
Что такое синус, косинус, тангенс и котангенс?
Тригонометрия в какой-то степени относится и к алгебре, и к геометрии. В этом уроке мы обсудим геометрическую часть тригонометрии.
А именно, нам понадобится прямоугольный треугольник. Это такой треугольник, в котором один из углов 90 градусов. Стороны, образующие прямой угол, называются катеты, для удобства обозначим их какими-нибудь буквами, например, \(a\) и \(b\). А гипотенузой называют сторону треугольника, лежащую напротив прямого угла, пусть она у нас будет \(c\). И обозначим острые углы в треугольнике за \(\alpha\) и \(\beta\).
С обозначениями закончили, без них изучать тригонометрию будет проблематично.
А теперь дадим определения тригонометрических функций: синуса, косинуса, тангенса и котангенса. Все эти страшные названия не существуют сами по себе, они обязательно берутся от какого-нибудь угла, например, \(\alpha\).
Синусом угла \(\alpha\) в ПРЯМОУГОЛЬНОМ треугольнике называют отношение противолежащего катета \(a\) к гипотенузе \(c\). (Противолежащий катет – это сторона, которая лежит прямо напротив угла \(\alpha\)). Посмотрите на рисунок, в нашем случае синус \(\alpha\) можно записать так:
Это и есть определение синуса: синус – это отношение определенных сторон треугольника. Ничего сложного тут нет.
Косинусом угла \(\alpha\) в прямоугольном треугольнике называют отношение прилежащего катета \(b\) к гипотенузе \(c\). (Прилежащий катет – это катет, который образует угол \(\alpha\) с гипотенузой.) Опять обратите внимание на рисунок:
Тангенсом угла \(\alpha\) называют отношение противолежащего катета \(a\) к прилежащему \(b\):
Котангенсом угла \(\alpha\) называют отношение прилежащего катета \(b\) к противолежащему \(a\):
Вот так просто вводятся определения всех тригонометрических функций через обычный прямоугольный треугольник.
Свойства тригонометрических функций
$$ \sin(\alpha) \in [-1;1];$$ $$ \cos(\alpha) \in [-1;1];$$
Для тангенса и котангенса никаких ограничений нет, они могут принимать абсолютно любые значения.
Теперь выведем несколько формул, без которых нам точно потом не обойтись. Например, можно обратить внимание, что тангенс выражается через деление синуса на косинус, просто расписав их по определению:
А последняя формула есть ни что иное, как определение тангенса: $$ tg(\alpha)=\frac;$$ Значит $$ tg(\alpha)=\frac
Кроме этого, легко заметить, что функции тангенса и котангенса взаимно обратны: $$tg(\alpha)*ctg(\alpha)=\frac*\frac=1.$$
А теперь мы подобрались к не самой очевидной тригонометрической формуле, но одной из самых главных во всей тригонометрии. Основное тригонометрическое тождество:
$$\sin^2(\alpha)+\cos^2(\alpha)=1. \qquad (1)$$
И вторая аналогичная формула для котангенса: $$1+сtg^2(\alpha)=\frac<1><\sin^2(\alpha)>;$$ Вывод один в один, сделайте сами.
Для удобства соберем все формулы вместе. $$\sin^2(\alpha)+\cos^2(\alpha)=1. \qquad(1)$$ $$ tg(\alpha)=\frac
Зачем же они нужны? Оказывается, эти формулы помогают связать тригонометрические функции между собой. Посмотрите внимательно на первую формулу (1): зная, например, чему равен косинус, можно легко найти синус, и наоборот.
Пример 1 Пусть \(\cos(\alpha) =\frac<1><2>\), найдите \(\sin(\alpha)=?\)
Берем основное тригонометрическое тождество (формула (1)) и подставляем в него известный по условию задачи \(\cos(\alpha)=\frac<1><2>:\) $$\sin^2(\alpha)+\cos^2(\alpha)=1;$$ $$\sin^2(\alpha)+\left(\frac<1><2>\right)^2=1;$$ А дальше просто решаем получившееся уравнение относительно синуса: $$\sin^2(\alpha)=1-\left(\frac<1><2>\right)^2;$$ $$\sin^2(\alpha)=1-\frac<1><4>;$$ Приводим к общему знаменателю: $$\sin^2(\alpha)=\frac<4><4>-\frac<1><4>;$$ $$\sin^2(\alpha)=\frac<3><4>;$$ И здесь внимательно решаем квадратное уравнение: $$\sin(\alpha)=\pm\frac<\sqrt<3>><2>;$$ Обратите внимание на \(\pm\). Синус может быть как положительным, так и отрицательным, так как при подстановке и возведении в квадрат минус сгорает. Значит здесь получается два ответа.
Аналогично, зная хотя бы одну тригонометрическую функцию, можно найти все остальные, используя тригонометрические формулы. Рассмотрим еще пример:
Пример 2 Пусть \(\sin(\alpha) =\frac<1><3>\), найдите \(ctg(\alpha)=?\)
Смотрим на наш список формул и находим такую, в которой есть и синус и котангенс — это формула (6): $$1+сtg^2(\alpha)=\frac<1><\sin^2(\alpha)>.$$ Подставляем известный из условия синус \(\sin(\alpha) =\frac<1><3>\): $$1+сtg^2(\alpha)=\frac<1><\left(\frac<1><3>\right)^2>.$$ Перевернем правую часть: $$1+сtg^2(\alpha)=\left(\frac<3><1>\right)^2.$$ $$1+сtg^2(\alpha)=9.$$ Теперь решим уравнение и найдем котангенс: $$сtg^2(\alpha)=8.$$ $$сtg(\alpha)=\pm\sqrt<8>=\pm\sqrt<4>*\sqrt<2>=\pm2\sqrt<2>.$$
Ответ:\(сtg(\alpha)=\pm2\sqrt<2>\).
Значения тригонометрических функций
Все тригонометрические функции берутся от некоторых углов. Если нам известен угол, то это значит, что нам известно и значение тригонометрической функции. Например, синус от 30 градусов равен \(\frac<1><2>\):
При помощи калькулятора можно посчитать значение тригонометрической функции от любого угла (за редкими исключениями, поговорим об этом позже). Но есть, так называемые, стандартные углы, значения от которых всеобще известны. В школе пользоваться калькулятором нельзя, поэтому подавляющее большинство заданий из тригонометрии будет связано именно с этими углами, особенно в 9-м классе. Обычно стандартные углы записываются при помощи таблицы, которую придется выучить:
Вот несколько примеров, посчитанных при помощи таблицы (1): $$\cos(45^o)=\frac<\sqrt<2>><2>=\frac<\sqrt<2>><\sqrt<2>*\sqrt<2>>=\frac<1><\sqrt<2>>;$$ $$tg(60^o)=\sqrt<3>;$$ $$ctg(90^o)=0;$$
Наблюдательный читатель мог обратить внимание, что значения всех тригонометрических функций в таблице (1) либо положительны, либо равны нулю. Отрицательных значений нет совсем. Однако, в примерах №1 и№2, которые мы разобрали выше, у нас получались отрицательные значения. Дело в том, что в таблице (1) рассмотрены далеко не все стандартные углы, а только до 90 градусов. Есть расширенная версия этой таблицы, где указано больше стандартных углов. И у некоторых тригонометрических функций значения будут отрицательны. Пример такой таблицы:
Выглядит пугающе, но учить вам это НЕ НУЖНО! В некоторых школах есть изверги, которые заставляют учить такую таблицу, но в этом совершенно нет необходимости. В дальнейшем мы научимся сами выводить все значения тригонометрических функций только из маленькой таблицы.
Обратите внимание, что синус некоторого угла в треугольнике всегда положителен, неважно, тупой или острый угол. А вот косинус, тангенс и котангенс в треугольнике положительны только от острых углов и отрицательны от тупых.
Тут может возникнуть вопрос, как может существовать синус, косинус, тангенс или котангенс от тупого угла, большего чем \(90^o\), если мы давали определение всех тригонометрических функций через прямоугольный треугольник, в котором нет углов больших \(90^o\). Ну что ж, да тригонометрические функции существуют для любых углов и острых, и тупых, но для самого начала тригонометрии определения через прямоугольный треугольник нам более чем достаточно. Просто запомните выводы, которые мы сделали в предыдущем абзаце.
Рассмотрим пример на тригонометрию по типу схожий с заданиями ОГЭ. Обычно задачи сводятся просто к нахождению тригонометрической функции некоторого угла, нарисованного на рисунке:
Пример 2 По рисунку определить значение \(\sin(\alpha)=?\)
По определению синус в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе. Первым делом достроим наш синий угол \(\angle
Разберем еще примеры посложнее на нахождение тригонометрических функций друг через друга. Некоторые даже будут из реального ЕГЭ:
Пример 3 Пусть \(tg(\alpha)=\sqrt<3>\), найти \(\cos(\alpha)=?\), если известно, что \(\alpha Задание из ЕГЭ по профильной математике.
Условие аналогично условию в примерах №1 и 2, но появилось еще какое-то ограничение на угол \(\alpha\), пока не будем обращать на него внимания, и решаем как обычно. Воспользуемся формулой (5), в ней есть и косинус, и тангенс, как раз одна из функций нам дана, а другую надо найти: $$1+tg^2(\alpha)=\frac<1><\cos^2(\alpha)>;$$ $$1+(\sqrt<3>)^2=\frac<1><\cos^2(\alpha)>;$$ $$1+3=\frac<1><\cos^2(\alpha)>;$$ $$4=\frac<1><\cos^2(\alpha)>;$$ $$\cos^2(\alpha)=\frac<1><4>;$$ $$\cos(\alpha)=\pm\frac<1><2>.$$
У нас опять получилось два ответа из-за квадрата. В условии сказано, что задание из первой части ЕГЭ, а значит два ответа быть не может. Для этого нам и дано, что \(\alpha Пусть \(tg(\alpha) =-2\), найти \(\sin(\alpha)=?\), при \(90^o 90^o\), то значение косинуса должно быть отрицательным: $$cos(\alpha)=-\sqrt<\frac<1><5>>;$$
А потом, уже зная косинус, по основному тригонометрическому тождеству (1) можно найти требуемый в задаче синус: $$\sin^2(\alpha)+\cos^2(\alpha)=1;$$ $$\sin^2(\alpha)+\left(-\sqrt<\frac<1><5>>\right)^2=1;$$ $$\sin^2(\alpha)+\frac<1><5>=1;$$ $$\sin^2(\alpha)=-\frac<1><5>+1;$$ $$\sin^2(\alpha)=\frac<4><5>;$$ $$\sin(\alpha)=\pm\sqrt<\frac<4><5>>;$$ Синус у нас положительный и при острых \((\alpha Дан прямоугольный треугольник \(\bigtriangleup
Что если наблюдается отклонение ЭОС влево?
Тригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.
Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.
Синус, косинус, тангенс и котангенс. Определения
Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.
Определения тригонометрических функций
Синус угла ( sin α ) — отношение противолежащего этому углу катета к гипотенузе.
Косинус угла ( cos α ) — отношение прилежащего катета к гипотенузе.
Тангенс угла ( t g α ) — отношение противолежащего катета к прилежащему.
Котангенс угла ( c t g α ) — отношение прилежащего катета к противолежащему.
Данные определения даны для острого угла прямоугольного треугольника!
В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.
Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.
Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса — вся числовая прямая, то есть эти функции могут принимать любые значения.
Угол поворота
Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от — ∞ до + ∞ .
В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.
Начальная точка A с координатами ( 1 , 0 ) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 ( x , y ).
Синус (sin) угла поворота
Синус угла поворота α — это ордината точки A 1 ( x , y ). sin α = y
Косинус угла поворота α — это абсцисса точки A 1 ( x , y ). cos α = х
Тангенс угла поворота α — это отношение ординаты точки A 1 ( x , y ) к ее абсциссе. t g α = y x
Котангенс угла поворота α — это отношение абсциссы точки A 1 ( x , y ) к ее ординате. c t g α = x y
Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой ( 0 , 1 ) и ( 0 , — 1 ). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.
Синус и косинус определены для любых углов α .
Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z )
Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z )
При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.
Угол альфа при узи тазобедренных суставов норма
Многие годы пытаетесь вылечить СУСТАВЫ?
Глава Института лечения суставов: «Вы будете поражены, насколько просто можно вылечить суставы принимая каждый день средство за 147 рублей…
Чтобы ребенок успешно прошел родовые пути при рождении, связки его организма сверх эластичные. Тазобедренный сустав у каждого новорождённого недоразвит.
НАШИ ЧИТАТЕЛИ РЕКОМЕНДУЮТ!
Для лечения суставов наши читатели успешно используют Sustalaif. Видя, такую популярность этого средства мы решили предложить его и вашему вниманию. Подробнее здесь…
Активный процесс его «дозревания» происходит в течение первого года жизни, но особенно интенсивно в первый месяц.
По ряду причин у 2-5 процентов младенцев формирование тазобедренного сустава с рождения идет неправильно, тогда ставится диагноз дисплазия. Различаются разные степени болезни: первая – предвывих, вторая – подвывих, самая сложная – вывих, что при отсутствии лечения приводит к хромоте.
К отклонениям в развитии ТБС относятся: несформированность головок окостенения бедренной кости, изменение структуры, положения суставной впадины, повышенная эластичность связок.
Что сигнализирует о дисплазии сустава?
Причиной врожденной неполноценности сустава может быть такое положение ребенка в утробе, когда он сидит тазом вниз.
У малыша может появиться дисплазия, если он полный и весит более 5 кг. Также эту болезнь может провоцировать токсикоз у беременной девушки юного возраста.
Грудничка, находящегося в группе риска, постоянно наблюдают, хотя он может оказаться совершенно здоровым.
Обязанность следить за тем, не нарушена ли у новорожденного подвижность тазобедренных суставов, возлагается на ортопеда. Осмотры на предмет врожденной дисплазии будут проводить в течение года после рождения ребенка.
О дисплазии соединения тазовой и бедренной кости у новорожденных свидетельствует неправильные размещение и глубина кожных складок.
Врачебному осмотру подвергаются складочки под обеими ягодицами, под коленями и в паху. Дисплазию можно исключить, если все складочки схожи и образуются по одной линии.
Но по этому признаку точно диагностировать неполноценность сустава нельзя. У большинства новорожденных складочки на одной ягодице могут быть глубже, чем на другой.
Они становятся идентичны только через три месяца после рождения. Иногда дисплазия имеется и на левом, и на правом суставе, поэтому определить ее сложно.
При сравнении расположения коленных чашечек ортопед может заметить, что одна ножка у малыша несколько короче другой. Это уже очевидный симптом нарушения функциональности суставов.
Но он встречается редко, так как характерен только для новорожденных с тяжелой формой заболевания. В этом случае бедро уже вывихнуто, смещена назад головка кости.
Врач сможет точно определить дисплазию по симптому соскальзывания или «щелчка». Для этого ортопеду необходимо положить ребенка на спину и развести его ножки.
Если сустав работает полноценно, бедра новорожденного коснутся стола, образуя прямой угол в 90 градусов.
О наличии нарушений «скажет» особый щелчок, причем ножки будет невозможно развести до конца. Когда врач отпустит ножки ребенка, они вернутся в изначальное положение, совершая резкое движение.
Определить патологию вывиха этим способом можно только в течение двух первых недель после рождения малыша.
Что бедро новорожденного ограничено в движении, можно выявить через три недели после рождения ребенка.
При игнорировании этих симптомов дисплазии у новорожденного болезнь может прогрессировать. Ребенку будет трудно передвигаться.
Что такое дисплазия
Дисплазия тазобедренного сустава у взрослых — врожденное заболевание недоразвития. Патология коварна. Без правильного лечения ведет к остеохондрозу, искривлению позвоночника, неправильному положению тазовых костей. Начинается тяжелое дегенеративное состояние, которое приводит к инвалидности по причине диспластического коксартроза.
Анатомически тазобедренный сустав подвижно соединен головкой кости бедра с вертлужной впадиной. Чашеобразная форма впадины дает двигаться телу сустава во всех направлениях.
Он соединяет крупные кости, несет самую мощную нагрузку. У него прочная капсула. Она анатомически скреплена четырьмя крупными связками. Внутри сустава есть особая связка, соединяющая головку бедренной кости с краем вертлужной впадины.
В момент рождения сустав еще не созрел и в нем нет стабильности. Вертлужная впадина частично состоит из хрящевой структуры, в местах соединения существует еще только хрящевая прослойка.
Головка и часть шейки бедра с хрящевидной структурой. Вертлужная впадина еще маленькая, она может вместить только третью часть головки кости бедра с углом вертикального наклона 60º. Вертлужная впадина у взрослых вмещает в себя две трети головки бедра и ее угол наклона 40º.
Узи тазобедренных суставов у грудничков
Формирование тазобедренного сустава начинается уже на 5—6 неделе беременности и продолжается, после рождения малыша, вплоть до того, как ребенок начнет ходить. По статистике примерно у 2—3% новорожденных наблюдается недоразвитость тазобедренного сустава (дисплазия), вызванная неправильным формированием костных и хрящевых структур.
Это заболевание занимает первое место среди врожденных деформаций опорно-двигательного аппарата. Чаще встречается у девочек. Обычно поражается левый сустав, реже правый или оба вместе. Степень поражения при дисплазии бывает от незначительной незрелости без смещения, до врожденного подвывиха и вывиха бедренной кости.
Причиной дисплазии чаще всего становится наследственные генетические заболевания, которые можно отследить у близких родственников. Также поводом к появлению патологии бывают:
- внутриутробное нарушение формирования опорно-двигательного аппарата, под действием различных повреждающих факторов, заболеваний (поздний токсикоз, маловодие, инфекционные заболевания, плохое питание);
- многоплодная беременность, когда снабжение питательными веществами одного плода страдает из-за другого;
- врожденные вывихи бедра;
- ягодичное или ножное предлежание плода;
- недоношенность;
- тяжелые длительные роды;
- плотное пеленание малыша в первые месяцы жизни.
Поэтому родителям следует быть осторожными, туго не пеленать малыша или надевать ползунки.
Диагностические критерии
Симптоматика диспластического процесса тазобедренного сустава с образованием аномалии развития костей таза часто способна развиваться у младенцев. Если обследование и лечение проведены правильно, по достижении годовалого возраста ребёнок становится абсолютно здоровым, начинает самостоятельно передвигаться.
Если заболевание носит тяжёлый или запущенный характер, показывает клинические и рентгенологические признаки врождённых вывихов либо подвывихов в суставе, потребуется серьёзное лечение, до хирургического вмешательства и последующей реабилитации функций сустава. В подобной ситуации одежда для детей с дисплазией выбирается с учётом возможного ношения гипса или специальных шин и ортезов. Пеленать ребёнка требуется свободно, не стесняя движений.
При проведении оценки состояния опорно-двигательной системы у новорождённого следует принимать в расчёт обстоятельство, что многие части костно-мышечной системы у новорождённого ребёнка не созрели и продолжают формирование под влиянием ряда факторов, как внешних, так и генетически обусловленных. Подобное явление – физиологическая норма.
Для полного формирования структуры тазобедренных суставов требуется несколько лет. Даже на столь ранних стадиях развития ребёнка выделяют характерные признаки для оценки состояния и функциональных возможностей суставов, предоставляющие возможность определить, правильно ли происходит развитие и формирование тканей тазобедренного сустава.
Числа
Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?
Синус, косинус, тангенс, котангенс числа
Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.
Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.
Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.
Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.
Клинические проявления
Смещение ЭОС не является заболеванием, поэтому для него не характерны определенные клинические признаки. Помимо этого, патологии, которыми оно вызвано, тоже могут протекать со стертой симптоматикой. В этом случае отклонения электрической оси сердца влево нередко обнаруживаются только при расшифровке электрокардиограммы.
Существуют определенные симптомы, присущие для отдельных заболеваний. Например, при гипоксии левого желудочка они выражаются приступообразными болями в области груди и скачками АД. Может появиться тахикардия и сильная головная боль. При блокаде левой ножки пучка Гиса возможен обморок и брадикардия.
Тригонометрические функции углового и числового аргумента
Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z ).
Можно сказать, что sin α , cos α , t g α , c t g α — это функции угла альфа, или функции углового аргумента.
Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.
Основные функции тригонометрии
Синус, косинус, тангенс и котангенс — основные тригонометрические функции.
Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.
Использование
Прописная буква альфа не используется как символ, потому что она пишется так же, как и заглавная латинская буква A.
Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы
Тригонометрия — раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой нужной науки внесли ученые Ближнего Востока и Индии, которые придумали наиболее важные понятия, объяснили многие свойства, предложили варианты измерения и др.
Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии без таблиц и графиков.
Синус, косинус, тангенс и котангенс. Определения
Зачем разделять понятия синуса, косинуса, тангенса и котангенса?
Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.
Определения тригонометрических функций
Что такое синус?
Синус угла ( sin α ) — это отношение противолежащего этому углу катета к гипотенузе.
Что такое косинус?
Косинус угла ( cos α ) — это отношение прилежащего катета к гипотенузе.
Что такое тангенс?
Тангенс угла ( t g α ) — это отношение противолежащего катета к прилежащему.
Котангенс угла ( c t g α ) — отношение прилежащего катета к противолежащему.
Данные определения даны для острого угла прямоугольного треугольника!
Синус и косинус можно представить через экспоненту (экспоненциальная функция).
В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.
Означения синуса, косинуса, тангенса и котангенса позволяют вычислять (находить) значения этих функций по известным длинам сторон треугольника.
Что и почему важно и принято помнить в ходе такого нахождения?
Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тг и ктг — вся числовая прямая, то есть эти функции могут принимать любые значения.
Как найти синус? Для начала нужно определиться, какой перед нами треугольник: прямоугольный или произвольный. В первом случае можно использовать обычный тригонометрический метод, а во втором — теорему косинусов.
Как найти косинус? Соответственно, нам нужно знать значения прилежающего катета и гипотенузы.
Как найти тангенс? Если треугольник прямоугольный, то тангенс вычисляется при помощи значений противоположного катета и прилежащего (в уравнении нужно поделить одно на другое). Если речь идет о числах, тупых, развернутых углов и углов, превышающих 360 градусов, то тангенс определяется при помощи синуса и косинуса (посредством их отношения и деления).
Теорема синусов и косинусов используется для того чтобы искать элементы в произвольном треугольнике. Такой поиск используется часто.
Угол поворота
Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от — ∞ до + ∞ .
В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность (круг) с центром в начале декартовой системы координат.
Начальная точка A с координатами ( 1 , 0 ) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 ( x , y ).
Синус (sin или син) угла поворота
Синус угла поворота α — это ордината точки A 1 ( x , y ). sin α = y
Косинус угла поворота α — это абсцисса точки A 1 ( x , y ). cos α =икс
Тангенс угла поворота α — это отношение ординаты точки A 1 ( x , y ) к ее абсциссе. t g α = y x
Котанг угла поворота α — это отношение абсциссы точки A 1 ( x , y ) к ее ординате. c t g α = x y
Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой ( 0 , 1 ) и ( 0 , — 1 ). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогична ситуация с котангенсом. Отличие состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.
Простое правило: синус и косинус определены для любых углов α .
Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z )
Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z )
При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.
Числа
Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?
Синус, косинус, тангенс, котангенс числа
Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.
Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.
Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.
Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.
Начальная точка на окружности — точка A c координатами ( 1 , 0 ).
Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .
Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .
Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.
Синус (sin) числа t
Синус числа t — ордината точки единичной окружности, соответствующей числу t. sin t = y
Косинус числа t — абсцисса точки единичной окружности, соответствующей числу t. cos t = x
Тангенс числа t — отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t
Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.
Тригонометрические функции углового и числового аргумента
Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z ).
Можно сказать, что sin α , cos α , t g α , c t g α — это функции угла альфа, или функции углового аргумента.
Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.
Основные функции тригонометрии
Синус, косинус, тангенс и котангенс — основные тригонометрические функции.
Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.
Связь определений sin, cos, tg и ctg из геометрии и тригонометрии
Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.
Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A ( 1 , 0 ) на угол величиной до 90 градусов и проведем из полученной точки A 1 ( x , y ) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 ( x , y ) . Длина катета, противолежащего углу, равна ординате точки A 1 ( x , y ) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.
В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.
sin α = A 1 H O A 1 = y 1 = y
Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.
Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.
Синус, косинус, тангенс и котангенс: основные формулы