Практическое руководство по печати шестеренок на 3D-принтере
Данный материал есть общее руководство по проектированию и печати на послойном 3D-принтере пластиковых шестеренок.
Выключатель света на шестеренках — хитрый пример того, что можно будет спроектировать самостоятельно после прочтения этой статьи.
Оптимальные материалы для пластиковых шестеренок
Какой же материал самый лучший? Короткий ответ в плане качества готовых шестеренок выглядит следующим образом:
Nylon (PA) > PETG > PLA > ABS
Нейлоновый филамент (PA-6, PA-12, Nylon) — невероятно прочный, долговечный и многофункциональный материал для 3D-печати. Низкий коэффициент трения, надежное сцепление слоев и высокая температура плавления делает его отличным материалом для 3D-печати шестеренок. К недостаткам нейлона можно отнести его склонность к впитыванию влаги и сложность печати этим филаментом.
PETG (Полиэтилентерефталат-гликоль) — также жесткий и прочный материал, большим плюсом является его высокий показатель спекаемости слоев, хорошо липнет к столу.
У PLA по сравнению с ABS хорошая жесткость и великолепные показатели в плане износостойкости, что делает его фаворитом если это позволяет температура. Низкий температурный порог, при котором деталь из PLA начинает искажаться, делают ABS лучшим выбором, когда речь идет о 75 градусах Цельсия (ABS начинает плавиться при 105).
Кстати, биоразлагаемость PLA — переоцененное свойство. Да, PLA биоразлагаемый материал. Но это никак не может быть заметно конечному пользователю. Биоразлагаемость — совсем не то, что водорастворимость. Чтобы биоразложить пластик, требуются специальные устройства компостирования в управляемой внешней среде.
Инструкция по печати и сборке шестереночного выключателя
Владельцы 3D-принтеров могут бесплатно скачать STL-файлы
- Пожалуйста, обратите внимание, на лицензию «Только для личного пользования», т.е. результат нельзя распространять, продавать, менять и т.д.
- В собранном виде конструкция имеет 15,87 см в диаметре. Самая большая напечатанная деталь — 14,92 см в диаметре
Распечатайте все детали с не менее чем 3 периметрами по всем сторонам и снизу, 15% заполнения. Рекомендуем толщину слоя не более 0,3 мм. Работать будет любой материал — пока удастся избежать перекосов деталей, что приведет устройство в негодность.
Деталь ручки — единственная, для которой потребуются поддержки.
Инструкция по сборке (прочесть до начала работы)
- Почистите с помощью лезвия зубцы шестеренок, чтобы они хорошо совмещались, затем установите их на пластину с тем же направлением вращения, в котором они печатались (штырек центральной шестеренки справа, зацепка ведомой — сверху по центру).
- Закрепите основную шестеренку, попав штырьками в отверстия.
- Нанесите немного сухого клея (хорошо подойдет клеящий карандаш) на рабочий конец рычага и установите рычаг с той стороны, с которой он совпадает по штырькам. Клей нужен для того, чтобы закрепить рычаг на штырьки. Рычаг также прижимает к конструкции основную шестеренку.
- Нагрейте и размягчите зажимы. Этого довольно, чтобы их раскрыть. Выровняйте края зажимов по отверстиям с задней стороны пластины и обожмите шестеренку по кругу. (Отверстия на обороте пластины могут потребовать чистки — нож в помощь, все зависит от того, насколько хорош у вас принтер). Прижимайте зажимы до застывания. Это гарантирует, что все будет надежно держаться.
Особые преимущества послойной печати и примеры использования шестеренок
Итак, в чем же преимущество 3D-печати шестеренок перед традиционными методами их изготовления, и насколько прочными получаются шестеренки?
Напечатанные пластиковые шестеренки дешевы, процесс быстр, можно без труда получить специализированный результат. Сложные шестеренки и 3D-вариации печатаются без проблем. Процесс прототипирования и создания проходит быстро и чисто. Самое главное то, что 3D-принтеры достаточно распространены, так что набор STL-файлов из интернета может обеспечить тысячи людей.
Конечно, печатать шестеренки распространенным пластиком — это компромисс по качеству поверхности и износостойкости, если сравнивать с литыми или обработанными пластиковыми шестернями. Но если правильно все спроектировать, напечатанные шестеренки могут оказаться достаточно эффективным и разумным вариантом, а для некоторых решений — идеальным.
Большинство рабочих приложений выглядят наподобие редуктора, как правило, для небольших электродвигателей, ручек и заводных ключей. Это потому, что электродвигатели отлично работают на высоких скоростях, но у них возникают проблемы с резким снижением оборотов, и обойтись без шестереночной передачи в таком случае проблематично. Вот примеры:
Специфические проблемы послойной печати
- Напечатанные шестеренки перед использованием обычно требуют небольшой постобработки. Будьте готовы к «червоточинам» и к тому, что зубцы нужно будет обработать лезвием.
Уменьшение диаметра центрального отверстия — очень распространенная беда даже на дорогих принтерах. Это результат множества факторов. Отчасти это — температурное сжатие охлаждающегося пластика, отчасти — потому что отверстия проектируются в виде многоугольников с большим числом углов, которые стягиваются по периметру отверстия. (Всегда экспортируйте STL-файлы шестеренок с большим числом сегментов).
Слайсеры тоже вносят свой вклад, поскольку некоторые из этих программ могут выбирать разные точки для обхода отверстий. Если внутренний край отверстия будет рисовать внутренний край экструдируемого пластика, то реальный диаметр отверстия будет иметь небольшую усадку, и чтобы в это отверстие потом что-нибудь вставить, может понадобиться определенное усилие. Так что слайсер может вполне намеренно делать отверстия меньше.
Кроме того, любое расхождение слоев или расхождение по ширине предполагаемого и реального экструдирования могут оказывать довольно заметный эффект, «уплотняя» отверстие. Бороться с этим можно, например, моделируя отверстия диаметром примерно на 0,005 см больше. По аналогичным причинам, и чтобы напечатанные шестеренки помещались друг рядом с другом и могли работать, рекомендуется оставлять в модели зазор между зубцами примерно в 0,4 мм. Это некоторый компромисс, зато напечатанные шестеренки не будут застревать.
Некоторые программы относительно успешно справляются с этим в автоматическом режиме, а вручную решить эту проблему можно, увеличив перекрытие слоев. Эта задача отлично задокументирована на RichRap, и в блоге приведены различные ее решения.
Наиболее распространенные причины отказа напечатанных шестеренок
- Стачивание зубцов (от длительного использования, см. Шаг 10 про смазку).
- Поломка зубцов (при высоких нагрузках).
- Проблемы с насаживанием на ось (см. Шаг 7 про насаживание).
- Поломка тела или спицы (это редкие поломки, которые возникают обычно, если шестеренка плохо напечатана, с недостаточным заполнением, например, или спроектирована со слишком тонкими спицами).
О важности эвольвенты
Плохой способ изготовления шестеренок
Довольно часто в любительских сообществах можно встретить неправильно спроектированные шестеренки — моделирование шестеренок дело не такое уж и простое. Как нетрудно догадаться, плохо спроектированные шестеренки плохо сцепляются, имеют избыточное трение, давление, отдачу, неравномерную скорость вращения.
Эвольвента (инволюта) — это определенного рода оптимальная кривая, описываемая по какому-либо контуру. В технике эвольвенту окружности используют как профиль зубца для колес зубчатой передачи. Это делается для того, чтобы скорость вращения и угол сцепления оставались постоянными. Хорошо разработанный набор шестеренок должен передавать движение исключительно через вращение, с минимальным проскальзыванием.
Моделирование эвольвентной шестеренки с нуля — дело довольно нудное, так что перед тем, как за него браться, имеет смысл поискать шаблоны. Ссылки на некоторые из них будут даны ниже.
Тонкости моделирования зубца. Оптимальное количество зубцов
Подумайте вот о чем: если вам нужно передаточное число 2:1 для линейного механизма — сколько зубцов должно быть на каждой шестеренке? Что лучше — 30 и 60, 15 и 30 или 8 и 17?
Каждое из этих соотношений даст один и тот же результат, но комплект шестеренок в каждом случае будет при печати сильно отличаться.
Большее количество зубцов дает более высокий коэффициент сцепления (количество одновременно зацепленных зубцов) и обеспечивает более плавное вращение. Увеличение количества зубцов приводит к тому, что каждый из них должен быть меньше — чтобы уместиться на тот же диаметр. Мелкие зубцы более хрупкие, их сложнее точно напечатать.
С другой стороны, уменьшение количества зубцов дает больше объема для увеличения прочности.
Печатать на 3D-принтере меленькие шестеренки — это как раскрашивать в раскраске тонкие линии толстой кисточкой. (Это на 100% зависит от диаметра сопла и разрешения принтера по горизонтальной плоскости. Разрешение по вертикали не играет роли в ограничении по минимальным размерам).
Если вы хотите испытать свой принтер в деле печатания мелких шестеренок, можете воспользоваться этим STL:
Протестированный нами принтер все выполнил на высшем уровне, но при диаметре от примерно полудюйма зубцы стали выглядеть как-то подозрительно.
Совет заключается в том, чтобы делать зубцы как можно больше, избегая при этом предупреждения от программы о слишком малом их количестве, а также избегая пересечений.
Есть еще один момент, на который следует обратить внимание при выборе количества зубцов: простые числа и факторизация.
Числа 15 и 30 оба делятся на 15, так что при таком количестве зубцов на двух шестеренках одни и те же зубцы будут постоянно встречаться друг с другом, образуя точки износа.
Более правильное решение — 15 и 31. (Это ответ на вопрос в начале раздела).
При этом не соблюдается пропорция, зато обеспечивается равномерный износ пары шестеренок. Пыль и грязь будут распределяться по всей шестеренке равномерно, износ тоже.
Опыт показывает, что лучше всего, если соотношение количества зубцов двух шестеренок лежит в интервале примерно от 0,2 до 5. Если требуется большее передаточное число, лучше добавить в систему дополнительную шестеренку, иначе может получиться механический монстр.
Мало зубцов — это сколько?
Такую информацию можно найти в каком-нибудь Справочнике механика. 13 – минимальная рекомендация для шестеренок с углом давления 20 градусов, 9 — рекомендованный минимум для 25 градусов.
Меньшее число зубцов нежелательно, потому что они будут пересекаться, что ослабит сами зубцы, да и в процессе печати придется решать проблему перекрытия.
Тонкости моделирования зубца. Угол давления, и Как сделать прочные зубцы
Угол давления 15, угол давления 35
Угол давления? Зачем мне это знать?
Это угол между нормалью к поверхности зубца и диаметром окружности. Зубцы с большим углом давления (более треугольные) прочнее, но хуже сцепляются. Их проще печатать, но при работе они создают высокую радиальную нагрузку на несущую ось, издают больше шума и склонны к отдаче и проскальзыванию.
Для 3D-печати хорошим вариантом является 25 градусов, что обеспечивает плавную и эффективную передачу в шестернях размером с ладонь.
Что еще можно сделать для укрепления зубцов?
Просто сделайте шестерню толще — это, очевидно, укрепит и зубцы. Удвоение толщины дает удвоение прочности. Хорошее общее правило гласит: толщина должна быть от трех до пяти раз больше шага зацепления шестеренки.
Прочность зубца шестеренки можно приблизительно оценить, если рассматривать его как небольшую консольную балку. При таком подходе ясно, что добавление перекрывающей сплошной стенки для уменьшение неподдерживаемой площади значительно укрепляет прочность зубцов шестеренок. В зависимости от применения, такая техника расчетов может быть использована также для уменьшения числа точек зацепления.
Методы крепления на ось
Утопленный шестиугольник (шестигранник); фиксирующий винт в плоскости
Шестеренка с клином на оси
Тугая насадка на ось с насечками. Этот самый простой метод встречается не слишком часто. Здесь надо быть внимательным со перекосом пластика, что с течением времени ухудшит передачу момента. Такая конструкция является также неразборной.
Ось на фиксирующем винте в плоскости шестерни. Фиксирующий винт проходит сквозь шестерню и упирается в плоский участок на оси. Фиксирующий винт обычно направляется непосредственно в тело шестерни или через утопленную гайку через квадратное отверстие. У каждого метода есть свои риски.
Если направлять винт напрямую, можно сорвать хрупкую пластиковую резьбу. Метод с утопленной гайкой решает эту проблему, но, если не проявить достаточно аккуратности и приложить при креплении слишком большое усилие, тело шестерни может сломаться. Делайте шестерню потолще!
Добавление специальных ввинчивающихся термовставок, как здесь, существенно улучшит прочность насадки на ось.
Утопленный шестигранник — шестиугольная врезка, в которой сидит шестиугольная гайка под шестиугольный винт. Вокруг шестиугольника нужно напечатать достаточно сплошных слоев, так чтобы винту было за что держаться. При этом тоже полезно использовать фиксирующий винт, особенно если речь идет о высоких оборотах.
Клин встречается в мире любительской 3D-печати нечасто.
Ось как единое целое с гайкой. Такое решение хорошо противостоит нагрузкам на скручивание. Его, однако, очень трудно добиться на принтере, потому что шестерни приходится печатать перпендикулярно к поверхности стола, а любые оси при таком решении имеют слабое место по оси Z, что проявляется при высоких нагрузках.
Некоторые типы шестеренок
Внешние и внутренние прямозубые шестерни, параллельные спиральные (косозубые), двойные спиральные, реечные, конические, винтовые, плосковершинные, червячные
Спиральное зубчатое колесо (елочка). Его обычно можно увидеть в экструдерах принтеров, они сложны в работе, но имеют свои преимущества. Они хороши большим коэффициентом сцепления, самоцентровкой и самовыравниванием. (Самовыравнивание бесит, потому что отражается на работе всей конструкции). Этот тип шестеренок также непрост в изготовлении на обычном оборудовании, вроде любительских принтеров. 3D-печать знает значительно более простые методы.
Червячная шестерня. Легко моделируется, есть большой соблазн ее использовать. Следует отметить, что передаточное число такой системы равно числу зубцов шестеренки, поделенному на количество проемов червяка. (Надо посмотреть с торца червяка и посчитать количество начинающихся спиралей. В большинстве случаев получается от 1 до 3).
Реечная шестерня. Преобразует вращательное движение в линейное и наоборот. Здесь речь идет не о вращении, а о расстоянии, которое проходит рейка с каждым поворотом вала шестерни. Тут очень просто вычислять плотность зубцов: надо лишь умножить их плотность на рейке на пи и на диаметр шестерни. (Или умножить количество зубцов на рейке на плотность зубцов на шестерне).
Смазка 3D-напечатанных шестеренок
Если устройство работает при малых нагрузках, на малых скоростях и частотах, о смазке пластиковых шестеренок можно не беспокоиться. Но если нагрузки высоки, то можно попробовать продлить срок службы, смазывая шестерни и уменьшая трение и износ. В любом случае все функции шестеренок более эффективны при наличии смазки, а сами шестерни служат дольше
Для таких объектов, как шестеренки экструдера 3D-принтера, можно порекомендовать плотную смазку. Для этого отлично подойдут литол, PTFE или смазки на силиконовой основе. Смазку надо наносить, слегка протирая деталь туалетной бумагой, чистым бумажным полотенцем или не пыльной тканью, равномерно распределяя лубрикант, несколько раз провернув шестеренку.
Любая смазка лучше, чем никакой, но надо убедиться в ее химической совместимости с данным пластиком. А еще всегда надо помнить, что смазка WD-40 — отстой. Хотя она и прилично чистит.
Инструментарий для изготовления шестеренок
Высококачественные шестеренки можно делать на одних лишь бесплатных программах. То есть, существуют платные программы для очень оптимизированных и совершенных шестереночных соединений, с тонко настраиваемыми параметрами и оптимальной производительностью, но от добра добра не ищут. Просто надо сделать так, чтобы в одном и том же механизме использовались шестеренки, изготовленные одним и тем же инструментом, чтобы соединения сцеплялись как надо. Шестеренки лучше моделировать парами.
Вариант 1. Найти имеющуюся модель шестеренки, модифицировать или масштабировать ее под свои нужды. Вот перечень баз данных, где можно найти готовые модели шестеренок.
-
: обширный массив 3D-моделей, проверенных решений : гигантская база данных присланных пользователями моделей : база данных присланных пользователями моделей : 3D-модели мелких механических деталей : 3D-модели множества типов шестеренок
Вариант 2. Разработать шестеренку с нуля, используя бесплатные онлайн-шаблоны для генерации шестеренок
Если вы не можете получить подходящую деталь, копируя имеющиеся модели, следующим вариантом для создания собственного решения будет использование эвольвентного генератора шаблонов шестеренок. К счастью, тут на помощь придет множество крутых инструментов.
- Вот набор полезных моделей шестеренок для кастомизации на Thingiverse.
- Matthias Wandel’s classic – программа для генерации шестеренок.
- Online STL File Creator — создаем STL-файлы легко и просто. генерирует SVG-файлы прямозубых шестеренок (Эти файлы могут быть конвертированы в импортируемые DXF здесь. Впрочем, некоторые программы, такие как Blender, умеют импортировать SVG напрямую, без танцев с бубнами). – бесплатная программа векторной графики с интегрированным генератором шестеренок. Приличное руководство по созданию шестеренок на Inkscape — здесь и здесь тоже.
Редакторы STL-файлов
Большинство генераторов шаблонов шестеренок дают на выходе STL-файлы, что может раздражать, если вам требуются особенности, которых генератор не предлагает. STL–файлы — это PDF мира 3D, они изощренно сложны для редактирования, однако редактирование возможно.
TinkerCAD. Хорошая элементарная браузерная CAD-программа, простая и быстрая в освоении, одна из немногих программ 3D-моделирования, которая умеет модифицировать STL-файлы. www.Tinkercad.com
Meshmixer. Хорошая программа для масштабирования исходных форм. http://meshmixer.com/
Не-FDM 3D-печать
Большинство людей, даже убежденные любители, не имеют непосредственного доступа к другим технологиям 3D-печати для изготовления шестеренок. Между тем такие сервисы существуют и могут помочь.
SLA – отличная технология для профессионального прототипирования шестеренок. Печатаемые слои не видны, в результате процесса можно получать очень мелкие детали. С другой стороны, детали получаются дорогими и несколько хрупкими. Если вы используете этот процесс для прототипирования будущей литой модели, проблем с ее извлечением не возникнет. Делайте деталь сплошной, а то она непременно сломается!
SLS – очень точный процесс, в результате которого получаются прочные детали. Технология не требует подпорок для нависающих структур. Можно создавать сложные и подробные изделия, лучше со стенками толщиной до четверти дюйма. Слои печати также почти невидимы. НО, шершавая поверхность (потому что технология основана на порошковой печати) крайне склонна к износу. Требуется очень мощная смазка, и многие вообще не рекомендуют SLS-шестеренки для приложений длительного пользования.
Технология BinderJet хороша для детализированных и точных многоцветных декоративных или не конструкционных деталей. Подойдет для получения деталей безумных цветов, впрочем, очень хрупких и зернистых, так что это не то, что требуется для функциональных шестеренок.
Как напечатать на 3d принтере другой 3d принтер
Ну, допустим, у вас есть свой крупный принтер и вы можете печатать достаточно крупные объекты. Вы верите в идею движения reprap, принтер должен иметь возможность самостоятельно воспроизводить себя!
Или вы хотите бросить вызов себе и окончательно разобраться, как работает 3D-принтер.
Или ваш нынешний 3D-принтер просто стоит и пылится в углу комнаты, потому что вы уже напечатали все, что приходило в голову, и осталось самая сложная задача, которая беспокоит всех профессионалов 3d печати — как осуществить клонирование имеющегося оборудования на нем самом.
Шаг 1: Предисловие
Давайте будем откровенными. это не ультра дешевый принтер. Это не Chery 3D-принтер за $60. Это не способ сэкономить деньги или время. Это не первый принтер.
Теперь поговорим о том, что это такое.
В 3Dtje мини-3D-принтер — это:
- Чертовски легко напечатать
- Печатные части из PLA
- Все укладывается в пределах 200х200 объем печати
- Большинство деталей могут быть напечатаны в 100х100 объема печати
- В отличие от большинства поделок, которые требуют наличие лазерного резака, ЧПУ
- Вы, вероятно, можете обойтись дрелью и ножовкой, чтобы подготовить 2 стержня необходимого размера
- Не нужно источника МДФ, или дерева, или акриловые листы или алюминиевые профили, на которые можно сильно потратиться
- Эта конструкция не новая, ничего революционного, но она надежная, печатает хорошо и работает с любым слайсером
- Все файлы моделей можно скачать бесплатно
- Вы можете скачать их и изменять их так, как вы хотели бы
- Вы даже можете продать их, если это вам нужно!
- 19 моделек
- Все детали разные и вместе смотрятся очень интересно
- Все детали соединяются с помощью винтов и гаек м3.
- Резка от 2 до 4 металлических направляющих
- Некоторые 3d печатные детали собираются интуитивно, даже можно не обращать внимание на фото
- Маленький, портативный, малая масса движущихся частей! Этот принтер может печатать быстро! (при правильной настройке)
- Этот 3д принтер вы сделаете своими руками, полностью!!
Шаг 2: Предпосылки
Вам понадобится 3D-принтер, ну или найти кого-то с этим аппаратом.
- Область печати должна быть не менее 200х200мм XY и может, 200мм Z если вы хотите печатать стержнями
- ПЛА 1 кг, можно другой, но это самый удобный вариант
- Я, честно говоря, не знаю, сколько его потребуется. Скорее всего 500г или около того
- Отвертки для винтов
- Плоскогубцы, приспособления для очистки печатных объектов (канцелярского ножа достаточно)
- Метрические сверла для открытия / чистки печатного отверстия (можно и отверткой)
- Это не жесткие требования, но зная, как решать распространенные проблемы принтера позволит сократить количество ругани, когда все не идеально в первый раз
- Если Вы разбираетесь в прошивке Марлин было бы очень круто пообщаться на этот счет, так как есть желание улучшить некоторые вещи.
Шаг 3: Комплектующие
Сразу оговорим, я составил список того, что точно нужно и того, что можно купить, чтобы сделать как можно лучшее качество. Но это будет дороже. Поэтому Вам выбирать, какой набор покупать — принципиально они не будут отличаться. Кроме того, можно заказать все это из Китая, будет дешевле, но ждать дольше. В любом случае искать надо на английском все комплектующие, поэтому берем их из таблицы и, например, вставляем в поиск на alliexexspress.
Таблица находится по этой ссылке.
Шаг 4: Печать деталей
Теперь переходим к самой интересной, на мой взгляд, части — прототипированию моделек. Честно говоря, я очень люблю печатать разные штуки, чувствуешь, что тебе по плечу любая задача, когда под рукой есть 3d принтер. Ладно, это все лирика.
Вот здесь расположен сам проект, где можно бесплатно скачать 3d модели для принтера. Качаем и начинаем подготовку к печати.
Самое главное — расположить верным образом детали на столе. Имеется в виду сделать так, чтобы у моделей как можно меньше было частей, висящих в воздухе. Это позволит отказаться от поддержек. Они ведь очень сильно портят качество, если делать слайсинг через Repetier Host с их автогенерацией, а не рисовать их самому.
Можно посмотреть видео, на котором видно оптимальное расположение деталей. Настройки печати я думаю Вы умеете делать, если нет — здесь есть статьи про это с файлами конфигураций.
Шаг 5: Монтаж
Предположим, что мы все напечатали. Кто-то может направляющие решил использовать металлические, купив их, например, в ИКЕЕ, и разрезав их на участки нужной длины. В любом случае, писать, как собирать этот 3d принтер особого смысла нет, да и лень, если честно. На мой взгляд — лучше фоток ничего нет!
Сборка рамы
Сначала выложу то, как должно выглядеть наше чудо в момент средней готовности. Потом будем смотреть как модули собирались.
Сборка оси Y
Данная ось двигает так называемую кровать. Сначала нам нужно установить мотор, на него надеть шкив. Затем установим свободно вращающийся шкив с другой стороны и вымерить для них ремень.
И теперь установим саму кровать, которая скрепит нам два конца ремня. Только не забудьте перед этим затянуть шкивы и то, что еще не туго затянуто. Подложка будет массивной и подлезать уже туда будет неудобно. Для соединения потребуются болты 200mm x 6mm, так что приготовьте их сразу.
Стоит отметить, что ремень должен быть очень хорошо натянут. Это будет сильно влиять на качество печати. Если вы не можете это сделать в момент сборки — можно воспользоваться специальным натяжителем. Это по сути простая пружинка. Что касается осей, то в данном случае они напечатаны, хотя это далеко не обязательно, просто название проекта обязывает))
Сборка оси X
В зависимости от вашего принтера, вам может понадобиться сделать отверстие сверлом 3мм в натяжителе ремня. Это отверстие должно быть весьма свободно.
- Прикрепите мотор к концу оси x разъемом вниз
- Прикрепите 20Т шестерни
- Вставьте 6мм стержни 6мм х 180 мм в отверстия на стороне двигателя. Вам нужно сократить эти стержни, если вы купили 200мм.
- Собрать натяжитель оси x либо с вашим собственным, либо с напечатанным натяжительным подшипником. Убедитесь, что гайка м3 в натяжителе, прежде чем продолжать.
- Пропустите ремень с левой стороны (со стороны двигателя), через редуктор, через натяжной подшипник на правую сторону
- В этот момент следует установить справа от оси x на стержни натяжитель ремня
- Если вас устраивает длина (убедитесь, что оси x натяжителя утоплен совсем немного) можно перерезать ремень. Не забудьте оставить дополнительную длину ремня
- Прикрепите LM6UU подшипники в каретке x
- Все собрали, ремни прикрепите к каретке x
- Потом останется отрегулировать все немного, чтобы убедиться в том, что ничего друг о друга не задевает
Сборка оси Z
Теперь собираем ось Z. Если Вы еще не поставили по ходу прошлых работ движки — самое время это сделать. Как понимаете, они должны стоять слева и справа. На них установим переходники для винтовых стержней, куда оные и поставим, зажав их шестигранником.
Втыкаем направляющие (параллельно винтовым стержням). Можно сказать, что со сборкой корпуса мы закончили.
Шаг 6: Сборка электрической цепи.
Как укладывать проводку — дело каждого. Здесь будут приведены на фото варианты, а как решать вам. Самое важное — все правильно подключить. Схему тоже выложу, но лучше еще посмотреть как в обычных 3d принтерах это делается. Например, чтобы далеко не ходить, можно прям на данном сайте пробежаться по следующим статьям:
Не обязательно все читать — по картинкам можно увидеть ключевые места и углубиться именно в их изучение.
В картинке ниже виден терминал питания зеленого цвета. Это весьма опасная и ненадежная вещь, которая иногда воспламеняется — опасно оставлять дома без присмотра работающий 3d принтер. Поэтому в статье про Ramps лучше почитать, как быть в этом случае.
Шаг 7: Прошивка
Так как у вас в роли мозга 3d принтера будет (скорее всего) Arduino Mega, то залить на нее прошивку будет достаточно просто. Все что вам нужно — Arduino IDE. Самая стандартная прошивка от Marlin. Главное выбрать конфиги правильные для платы. На данном ресурсе статьи про прошивку я не видел, но на просторах интернета ее можно легко найти. Вот полезные ссылки:
- Прошивка Marlin инструкция
- Может быть кому-то полезная инфа про электронику reprap, как там что функционирует
Шаг 8: Тестим
Наконец-то время что-нибудь напечатать! Сразу отметим, что стол надо покрыть молярным скотчем или каптоном, так как он у нас без подогрева. Иначе адгезии не будет. Также перед печатью обязательно правильно надо настроить расстояние между соплом и кроватью. О том, как это правильно сделать говорится здесь. Калибровка 3d принтера — наше все.
Так как вы смогли напечатать детали для этого принтера — значит можете и заслайсить собственные модели для его маленькой копии, собранной своими руками. Поэтому про слайсер говорить не будем, не забудьте только уменьшить область печати!
Скачать файлы 94 для 3D-принтера, помеченные ключевым словом диффузор
Слишком много результатов? Вы можете попробовать еще раз:
- написав ваши ключевые слова между кавычками "…" , чтобы уточнить поиск
- написав тире — перед термином, чтобы удалить конкретный термин из поиска
- написав by: и имя дизайнера, чтобы отфильтровать поиск по имени дизайнера
- написав номер дизайна для поиска конкретного дизайна
Вы заметили среди этих результатов один или несколько дизайнов, которые несочетаемы или не имеют отношения к вашему поиску? Пожалуйста, свяжитесь с нами, чтобы сообщить нам об этой проблеме, чтобы мы могли вмешаться.
Как правильно печатать филаментом PLA — советы и рекомендации по 3D-печати
Давайте рассмотрим в деталях процесс 3D-печати филаментом PLA. Мы обсудим, что такое PLA и как его подружить с вашим принтером, как подобрать правильную температуру и на каких поверхностях печатать.
PLA — это удивительный материал для 3D-моделирования. Но не токсичен и в процессе работы приятно пахнет. PLA бывает самых разных цветов, а по причине его температурных характеристик из него исключительно просто получаются великолепные объекты.
Если вы работали с ABS, вы обнаружите, что PLA тверже, наносится медленнее и с помощью него легче получаются замечательно гладкие детали. PLA меньше искажается под воздействием температуры, и им проще печатать крупные объекты. Следует учитывать, что, поскольку этот материал более жесткий, он, следовательно, более хрупкий. Если вы собираетесь использовать распечатанный вами объект в условиях, где ему придется испытывать много ударов и резких столкновений, PLA может оказаться не лучшим выбором.
Другой важный момент при печати PLA — это температуры, которым будет подвергаться распечатка. PLA становится мягким при 70-80 °C, и изготовленные из этого пластика объекты деформируются, если в течение продолжительного времени находятся под воздействием температур, которые выше указанных. Вот почему около экструдера следует использовать ABS или какой-либо другой материал. Все остальные детали принтера мы обычно распечатываем из PLA — кроме тех, которые находятся рядом с экструдером, они из ABS.
Проверьте качество пластика
Проблема пластиковая нить хрупкая и ломается в руках. При печати слои ложатся неравномерно, шероховато, частые пропуски и подтеки, слышны щелчки и хлопки. (Случается с ABS и PLA)
PLA и ABS гигроскопичны, то есть впитывают влагу из окружающей среды. Влажный пруток становится более ломким и хрупким. Может ломаться руками при сгибе. Такой филамент, если не сломался в механизме подачи экструдера, поступая в горячий хотэнд за доли секунды нагревается до температуры кипения воды, в следствие чего даже малое содержание влаги мгновенно закипает и вырывается наружу, создавая при этом характерный взрыв. Внешне такой пластик не будет отличаться от здорового, но он будет более хрупким и ломким. Качественный PLA и ABS не должен ломаться руками без усилия.
Решение просушите катушку с пластиком
- Поместите филамент в электрическую духовку на 2-3 часа и температуре 70 °C. Можно для этих целей использовать закрытую камеру принтера с подогревом стола.
- Храните не используемый пластик в герметичной коробке или пакетах с влагопоглотителем. Правильная фабричная упаковка для PLA и ABS — герметичный вакуумный пакет с пакетиком силикагеля.
- Влагопоглотитель не высушит пластик, но отлично защитит от излишней влаги.
- Используйте не гигроскопичные марки пластика SBS и HIPS — они не впитывают влагу, могут сколько угодно храниться без риска испортиться
Проблема пластик вытекает из сопла экструдера.
Для марок некоторых производителей очень сложно подобрать походящую температуру экструдера. Капризная печать, слои ложатся не равномерно, качество печати оставляет желать лучшего. Это не идеальный пластик, все что остается делать — при каждой загрузке пластика подбирать температуру экструдера.
Решение приобретайте качественные материалы проверенных производителей.
Как правильно напечатать первый слой
Первый слой — самая важная часть любой распечатки. Есть несколько вещей, который нужно сделать, чтобы первый слой прилип хорошо.
- Монтажная пластина (или подложка для печати) должна быть установлена на правильном уровне.
- Экструдер должен находиться на правильной высоте над ней.
- Материал основы должен быть достаточно хорош, чтобы PLA за него зацепился.
Печать на подложке
Используйте материалы для адгезии: подложки — один из самых простых и быстрых способов добиться отличных распечаток из PLA, как впрочем ABS, SBS или HIPS.
Раньше повсеместно использовался синий скотч 3M — не верх совершенства, но его было очень просто использовать, пока не перестал производиться. Но иногда во время печати ваша деталь могла отодрать скотч от стола, и в таких случаях объект будет иметь искажения.
Печать на подогретом столе
Если у вас стол с регулируемой температурой, можно вполне успешно печатать прямо на стекле. Рекомендуемая температура стола при печати PLA — 70 °C.
При печати на стекле исключительно важно выставить уровень стола и экструдера на правильную высоту. Если экструдер будет находиться слишком далеко от стола, PLA не прилипнет ВООБЩЕ; если слишком близко – стекло полностью заблокирует экструдирование материала, и он опять-таки не прилипнет ВООБЩЕ.
Если ваш первый слой не прилипает
- Проверьте уровень стола.
- Убедитесь, что печатающая головка находится достаточно близко, чтобы она качественно выдавливала первый слой. Зазор между соплом и поверхностью стола проверяется обычным листом бумаги. Лист толжен пролезать через это расстояние, но не застревать.
- Убедитесь, что вы достаточно прогнали экструдер перед началом печати, так что филамент поступает на стол в течение всего процесса печати первого слоя. В программе slic3r вы можете выставить количество обходов до 4 или 5, в зависимости от детали.
- Протрите стекло денатуратом.
Когда все настроено правильно, стекло – это самый лучший вариант для работы с PLA. На нем получается замечательный блестящий нижний слой, а подогрев стола обеспечивает то, что все выйдет гладко и ровно.
Прочие поверхности для печати
Печать на прозрачной самоклеющейся пленке для стола 3д принтера
Прозрачная полиэстеровая самоклеящаяся пленка с перманентным термоустойчивым клеевым слоем. Наклейте пленку на печатный стол. Эта плёнка намного плотнее и прочнее каптонового скотча, поэтому печатать можно намного дольше, выдерживает высокие температуры. Brim (Кайма) не нужен — шестерни без Brim это здорово. Держится дольше каптона.
Печать на каптоновой ленте
Многим удалось добиться хороших результатов, печатая на каптоновой ленте. Чтобы печатать на ней с помощью PLA, требуется монтажный стол с подогревом. Раньше мы именно так и печатали, но когда научились делать всё правильно на стекле, перестали считать этот вариант самым лучшим. Процесс печати на каптоновую ленту практически идентичен печати на стекле, однако требует больше подготовительных работ и очистки. Если вы знаете о каких-то других преимуществах каптоновой ленты, пожалуйста, поделитесь. Мы постоянно работаем над усовершенствованием процесса.
Печать на поликарбонат
Мы немного поэкспериментировали с поликарбонатом, слегка смазывая его растительным маслом. Поликарбонат работает, все распечатывается хорошо. Вот только деталь трудно снимается, так что преимущества как-то неочевидны. Нам кажется, что этот метод заслуживает более глубокого изучения, и мы расскажем о своих исследованиях, как только они будут проведены. А пока мы рекомендуем работать с синем скотчем.
За чем надо следить
Если температура слишком высока
Между разными частями распечатки вы заметите большое количество своего рода струн (соплей), а экструдер будет «протекать», выпуская большое количество пластика при перемещении между различными печатаемыми областями. Если такое происходит, вы должны попытаться снизить температуру, делая это с шагом в 5 градусов до тех пор, пока из экструдера не перестанет выходить чрезмерно много материала.
Иногда приходится работать с материалом, который просто менее вязок, чем это обычно бывает у PLA, и поэтому он легче протекает даже при более низких температурах. Мы рекомендуем увеличить на несколько миллиметров обратную подачу (ректракт, retract)
Если температура слишком мала
Вы заметите, что филамент или не прилипает к предыдущему слою и у вас получается неровная поверхность, или же деталь получится недостаточно прочной и ее легко разделить. Так или иначе, вам следует увеличить температуру на 5 градусов и продолжать ее наращивать до тех пор, пока у вас не станут получаться качественные отрезки на каждом слое, а после печати деталь окажется достаточно прочной.
Смена филамента
При смене цвета PLA:
- Выставьте на холодном экструдере температуру в 80 °C и дождитесь нагрева.
- Когда температура достигнет 80 °C, удалите из экструдера находящийся в нем филамент. Вы можете вытянуть его руками, или же может потребоваться реверсивная подача.
- Если у вас возникли проблемы с удалением филамента, увеличьте температуру до 100 °C и повторите попытку.
- Увеличьте температуру еще и обычным способом заправьте новый филамент.
- Прогоняйте его через экструдер до тех пор, пока он не начнет выходить чистым, т.е. только нового цвета. Если вы переходите с более темного цвета (например, черного) на более светлый (например, белый или натуральный), прогоняйте подольше, чтобы убедиться в отсутствии темных загрязнений:
- Прочистите шестерню экструдера и выдуйте все частицы из входа в него.
- Распечатайте что-нибудь, по поводу чего вам не жалко, если там будет немного предыдущего цвета, или прогоните экструдер в течение нескольких минут. Этот процесс может занять от 10 до 15 минут, прежде чем вы с уверенностью сможете отметить, что темный материал больше не подмешивается к светлому.
Примечание. Мы рекомендуем извлекать филамент, когда он находится в мягком, а не в полностью расплавленном состоянии — тогда будет меньше шансов, что расплавленный материал отложится с внутренней стороны экструдера или еще до камеры плавления. В обоих случаях такого рода остатки могут привести к трудноустранимому забиванию печатающего механизма. Можно также пропихнуть гибкий кусочек филамента, чтобы убедиться, что из конечной части экструдера удалены все загрязнения.
Что делать, если что-то не так
Есть несколько ключевых моментов, которые следует проверить, если распечатки не получаются. Но перед тем как мы рассмотрим решения, мы должны дать краткую характеристику симптомам.
«Первый слой никак не прилипает».
- Убедитесь, что экструдер находится на правильной высоте. Установите ограничитель или сам экструдер на высоту 0.
- Убедитесь, что стол выровнен. Зазоры во всех точках калибровки между соплом и столом должны быть приблизительно в толщину листа бумаги.
«У детали некачественные внутренние слои и верхняя поверхность».
- Проверьте температуру экструдирования (вам может понадобиться увеличивать ее с шагом в 5 градусов)
- Проверьте натяжение филамента.
- Прочистите шестерню подачи филамента
«На гранях моей детали много мелких бугорков».
- Убедитесь, что на принтер поступает достаточный поток данных. При печати с компьютера, убедитесь, что он не перегружен и нормально отправляет команды на принтер. Если тормозит принтер, обычно это означает, что перегружен он.
- Печатайте с SD-карты. На некоторых принтерах вы можете попробовать печатать с SD-карты. Часто это помогает принтеру получать достаточно данных и работать более плавно.
- Приобретите более качественный PLA. Мы обнаружили, что качество исходного материала может оказывать существенно влияние на качество печати. Покупка более качественного PLA может помочь в достижении лучших результатов. Тем не менее, не спешите все сваливать на PLA. При правильных установках и достаточном терпении любителям трехмерной печати удавалось успешно работать с самыми разнообразными материалами, многие из которых обладали очень низкой вязкостью и имели очень большие неоднородности. Вы должны уметь добиваться от детали по крайней мере функциональности – пусть даже и с филаментом немного более низкого качества.
«Вертикальные элементы моей распечатки выглядят расплавленными или слипшимися».